IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v82y2020i2d10.1007_s13171-019-00180-5.html
   My bibliography  Save this article

Posterior Contraction Rates for Stochastic Block Models

Author

Listed:
  • Prasenjit Ghosh

    (Texas A&M University)

  • Debdeep Pati

    (Texas A&M University)

  • Anirban Bhattacharya

    (Texas A&M University)

Abstract

With the advent of structured data in the form of social networks, genetic circuits and protein interaction networks, statistical analysis of networks has gained popularity over recent years. The stochastic block model constitutes a classical cluster-exhibiting random graph model for networks. There is a substantial amount of literature devoted to proposing strategies for estimating and inferring parameters of the model, both from classical and Bayesian viewpoints. Unlike the classical counterpart, there is a dearth of theoretical results on the accuracy of estimation in the Bayesian setting. In this article, we undertake a theoretical investigation of the posterior distribution of the parameters in a stochastic block model. In particular, we show that one obtains near-optimal rates of posterior contraction with routinely used multinomial-Dirichlet priors on cluster indicators and uniform or general Beta priors on the probabilities of the random edge indicators. Our theoretical results are corroborated through a small scale simulation study.

Suggested Citation

  • Prasenjit Ghosh & Debdeep Pati & Anirban Bhattacharya, 2020. "Posterior Contraction Rates for Stochastic Block Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 448-476, August.
  • Handle: RePEc:spr:sankha:v:82:y:2020:i:2:d:10.1007_s13171-019-00180-5
    DOI: 10.1007/s13171-019-00180-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-019-00180-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-019-00180-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Golightly & D. J. Wilkinson, 2005. "Bayesian Inference for Stochastic Kinetic Models Using a Diffusion Approximation," Biometrics, The International Biometric Society, vol. 61(3), pages 781-788, September.
    2. Hoff P.D. & Raftery A.E. & Handcock M.S., 2002. "Latent Space Approaches to Social Network Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1090-1098, December.
    3. McDaid, Aaron F. & Murphy, Thomas Brendan & Friel, Nial & Hurley, Neil J., 2013. "Improved Bayesian inference for the stochastic block model with application to large networks," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 12-31.
    4. Nowicki K. & Snijders T. A. B., 2001. "Estimation and Prediction for Stochastic Blockstructures," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1077-1087, September.
    5. repec:dau:papers:123456789/4648 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sirio Legramanti & Tommaso Rigon & Daniele Durante, 2022. "Bayesian Testing for Exogenous Partition Structures in Stochastic Block Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 108-126, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Falk Bräuning & Siem Jan Koopman, 2016. "The dynamic factor network model with an application to global credit risk," Working Papers 16-13, Federal Reserve Bank of Boston.
    2. Cristiano Varin & Manuela Cattelan & David Firth, 2016. "Statistical modelling of citation exchange between statistics journals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 1-63, January.
    3. Ludkin, Matthew, 2020. "Inference for a generalised stochastic block model with unknown number of blocks and non-conjugate edge models," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    4. Irene Crimaldi & Michela Del Vicario & Greg Morrison & Walter Quattrociocchi & Massimo Riccaboni, 2015. "Homophily and Triadic Closure in Evolving Social Networks," Working Papers 3/2015, IMT School for Advanced Studies Lucca, revised May 2015.
    5. Teague R. Henry & Kathleen M. Gates & Mitchell J. Prinstein & Douglas Steinley, 2020. "Modeling Heterogeneous Peer Assortment Effects Using Finite Mixture Exponential Random Graph Models," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 8-34, March.
    6. Tracy M. Sweet, 2015. "Incorporating Covariates Into Stochastic Blockmodels," Journal of Educational and Behavioral Statistics, , vol. 40(6), pages 635-664, December.
    7. Hledik, Juraj & Rastelli, Riccardo, 2020. "A dynamic network model to measure exposure diversification in the Austrian interbank market," ESRB Working Paper Series 109, European Systemic Risk Board.
    8. ter Braak, Cajo J.F. & Kourmpetis, Yiannis & Kiers, Henk A.L. & Bink, Marco C.A.M., 2009. "Approximating a similarity matrix by a latent class model: A reappraisal of additive fuzzy clustering," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3183-3193, June.
    9. Juraj Hledik & Riccardo Rastelli, 2018. "A dynamic network model to measure exposure diversification in the Austrian interbank market," Papers 1804.01367, arXiv.org, revised Aug 2018.
    10. Yunpeng Zhao & Qing Pan & Chengan Du, 2019. "Logistic regression augmented community detection for network data with application in identifying autism‐related gene pathways," Biometrics, The International Biometric Society, vol. 75(1), pages 222-234, March.
    11. Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
    12. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    13. Ian E. Fellows & Mark S. Handcock, 2023. "Modeling of networked populations when data is sampled or missing," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 21-35, April.
    14. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    15. Guang Ouyang & Dipak K. Dey & Panpan Zhang, 2020. "Clique-Based Method for Social Network Clustering," Journal of Classification, Springer;The Classification Society, vol. 37(1), pages 254-274, April.
    16. Thanne Mafaziya Nijamdeen & Jean Huge & Hajaniaina Ratsimbazafy & Kodikara Arachchilage Sunanda Kodikara & Farid Dahdouh-Guebas, 2022. "A social network analysis of mangrove management stakeholders in Sri Lanka's Northern Province," ULB Institutional Repository 2013/349602, ULB -- Universite Libre de Bruxelles.
    17. Yuan, Quan & Liu, Binghui, 2021. "Community detection via an efficient nonconvex optimization approach based on modularity," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    18. Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal advice‐seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
    19. Chung, Jaewon & Bridgeford, Eric & Arroyo, Jesus & Pedigo, Benjamin D. & Saad-Eldin, Ali & Gopalakrishnan, Vivek & Xiang, Liang & Priebe, Carey E. & Vogelstein, Joshua T., 2020. "Statistical Connectomics," OSF Preprints ek4n3, Center for Open Science.
    20. Jamie Olson & Kathleen Carley, 2013. "Exact and approximate EM estimation of mutually exciting hawkes processes," Statistical Inference for Stochastic Processes, Springer, vol. 16(1), pages 63-80, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:82:y:2020:i:2:d:10.1007_s13171-019-00180-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.