IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v79y2017i2d10.1007_s13171-017-0105-7.html
   My bibliography  Save this article

Posterior Contraction Rates of Density Derivative Estimation

Author

Listed:
  • Weining Shen

    (University of California)

  • Subhashis Ghosal

    (North Carolina State University)

Abstract

In this paper, we study the problem of Bayesian estimation of derivatives of a density function on the unit interval. We use a finite random series prior based on B-splines and study the asymptotic properties of the posterior distribution under the setting of fixed smoothness of the true function. We obtain the posterior contraction rate under both the L 2- and L ∞ $L_{\infty }$ -distances. The rate under L 2-distance agrees with the minimax optimal rate. This result is then extended to the estimation of a multivariate density function on the unit cube and its mixed partial derivatives using tensor product B-splines.

Suggested Citation

  • Weining Shen & Subhashis Ghosal, 2017. "Posterior Contraction Rates of Density Derivative Estimation," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 336-354, August.
  • Handle: RePEc:spr:sankha:v:79:y:2017:i:2:d:10.1007_s13171-017-0105-7
    DOI: 10.1007/s13171-017-0105-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-017-0105-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-017-0105-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weining Shen & Subhashis Ghosal, 2015. "Adaptive Bayesian Procedures Using Random Series Priors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1194-1213, December.
    2. Christopher R. Genovese & Marco Perone-Pacifico & Isabella Verdinelli & Larry Wasserman, 2016. "Non-parametric inference for density modes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 99-126, January.
    3. repec:dau:papers:123456789/7335 is not listed on IDEAS
    4. N. Hosseinioun & H. Doosti & H. Nirumand, 2012. "Nonparametric estimation of the derivatives of a density by the method of wavelet for mixing sequences," Statistical Papers, Springer, vol. 53(1), pages 195-203, February.
    5. Weining Shen & Surya T. Tokdar & Subhashis Ghosal, 2013. "Adaptive Bayesian multivariate density estimation with Dirichlet mixtures," Biometrika, Biometrika Trust, vol. 100(3), pages 623-640.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph Breunig & Ruixuan Liu & Zhengfei Yu, 2022. "Double Robust Bayesian Inference on Average Treatment Effects," Papers 2211.16298, arXiv.org, revised Feb 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qianwen Tan & Subhashis Ghosal, 2021. "Bayesian Analysis of Mixed-effect Regression Models Driven by Ordinary Differential Equations," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 3-29, May.
    2. José J. Quinlan & Fernando A. Quintana & Garritt L. Page, 2021. "On a class of repulsive mixture models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 445-461, June.
    3. Rabi Bhattacharya & Rachel Oliver, 2019. "Nonparametric Analysis of Non-Euclidean Data on Shapes and Images," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 1-36, February.
    4. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
    5. repec:dau:papers:123456789/13437 is not listed on IDEAS
    6. Qinchi Zhang & Wenzhi Yang & Shuhe Hu, 2014. "On Bahadur representation for sample quantiles under α-mixing sequence," Statistical Papers, Springer, vol. 55(2), pages 285-299, May.
    7. Hassan Sharghi Ghale-Joogh & S. Mohammad E. Hosseini-Nasab, 2021. "On mean derivative estimation of longitudinal and functional data: from sparse to dense," Statistical Papers, Springer, vol. 62(4), pages 2047-2066, August.
    8. Moawia Alghalith, 2022. "Methods in Econophysics: Estimating the Probability Density and Volatility," Papers 2301.10178, arXiv.org.
    9. Yi, Taihe & Wang, Zhengming, 2017. "Bayesian sieve method for piece-wise smooth regression," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 5-11.
    10. Zhao, Yanyun, 2015. "Bayesian Linear Regression with Conditional Heteroskedasticity," DES - Working Papers. Statistics and Econometrics. WS ws1504, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Guy P. Nason & Ben Powell & Duncan Elliott & Paul A. Smith, 2017. "Should we sample a time series more frequently?: decision support via multirate spectrum estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 353-407, February.
    12. Weining Shen & Subhashis Ghosal, 2015. "Adaptive Bayesian Procedures Using Random Series Priors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1194-1213, December.
    13. A. R. Linero, 2017. "Bayesian nonparametric analysis of longitudinal studies in the presence of informative missingness," Biometrika, Biometrika Trust, vol. 104(2), pages 327-341.
    14. Minerva Mukhopadhyay & Didong Li & David B. Dunson, 2020. "Estimating densities with non‐linear support by using Fisher–Gaussian kernels," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1249-1271, December.
    15. Federico Ferraccioli & Giovanna Menardi, 2023. "Modal clustering of matrix-variate data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 323-345, June.
    16. Norets, Andriy & Pelenis, Justinas, 2022. "Adaptive Bayesian estimation of conditional discrete-continuous distributions with an application to stock market trading activity," Journal of Econometrics, Elsevier, vol. 230(1), pages 62-82.
    17. Julyan Arbel & Riccardo Corradin & Bernardo Nipoti, 2021. "Dirichlet process mixtures under affine transformations of the data," Computational Statistics, Springer, vol. 36(1), pages 577-601, March.
    18. Das, Priyam & Ghosal, Subhashis, 2017. "Bayesian quantile regression using random B-spline series prior," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 121-143.
    19. Gwangsu Kim & Yongdai Kim & Taeryon Choi, 2017. "Bayesian Analysis of the Proportional Hazards Model with Time-Varying Coefficients," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 524-544, June.
    20. Konstantin Eckle & Nicolai Bissantz & Holger Dette & Katharina Proksch & Sabrina Einecke, 2018. "Multiscale inference for a multivariate density with applications to X-ray astronomy," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 647-689, June.
    21. Jing Zhou & Anirban Bhattacharya & Amy H. Herring & David B. Dunson, 2015. "Bayesian Factorizations of Big Sparse Tensors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1562-1576, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:79:y:2017:i:2:d:10.1007_s13171-017-0105-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.