IDEAS home Printed from https://ideas.repec.org/a/spr/pharme/v35y2017i8d10.1007_s40273-017-0510-8.html
   My bibliography  Save this article

A Comparison of Four Software Programs for Implementing Decision Analytic Cost-Effectiveness Models

Author

Listed:
  • Chase Hollman

    (University of Alberta)

  • Mike Paulden

    (University of Alberta
    University of Alberta)

  • Petros Pechlivanoglou

    (The Hospital for Sick Children
    University of Toronto
    University of Toronto)

  • Christopher McCabe

    (University of Alberta)

Abstract

The volume and technical complexity of both academic and commercial research using decision analytic modelling has increased rapidly over the last two decades. The range of software programs used for their implementation has also increased, but it remains true that a small number of programs account for the vast majority of cost-effectiveness modelling work. We report a comparison of four software programs: TreeAge Pro, Microsoft Excel, R and MATLAB. Our focus is on software commonly used for building Markov models and decision trees to conduct cohort simulations, given their predominance in the published literature around cost-effectiveness modelling. Our comparison uses three qualitative criteria as proposed by Eddy et al.: “transparency and validation”, “learning curve” and “capability”. In addition, we introduce the quantitative criterion of processing speed. We also consider the cost of each program to academic users and commercial users. We rank the programs based on each of these criteria. We find that, whilst Microsoft Excel and TreeAge Pro are good programs for educational purposes and for producing the types of analyses typically required by health technology assessment agencies, the efficiency and transparency advantages of programming languages such as MATLAB and R become increasingly valuable when more complex analyses are required.

Suggested Citation

  • Chase Hollman & Mike Paulden & Petros Pechlivanoglou & Christopher McCabe, 2017. "A Comparison of Four Software Programs for Implementing Decision Analytic Cost-Effectiveness Models," PharmacoEconomics, Springer, vol. 35(8), pages 817-830, August.
  • Handle: RePEc:spr:pharme:v:35:y:2017:i:8:d:10.1007_s40273-017-0510-8
    DOI: 10.1007/s40273-017-0510-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40273-017-0510-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40273-017-0510-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Sculpher & Michael Drummond & Martin Buxton, 1995. "Economic Evaluation in Health Care Research and Development: Undertake it Early and Often," Discussion Papers 12, Brunel University, Health Economics Research Group.
    2. Hawre Jalal & Petros Pechlivanoglou & Eline Krijkamp & Fernando Alarid-Escudero & Eva Enns & M. G. Myriam Hunink, 2017. "An Overview of R in Health Decision Sciences," Medical Decision Making, , vol. 37(7), pages 735-746, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eline M. Krijkamp & Fernando Alarid-Escudero & Eva A. Enns & Hawre J. Jalal & M. G. Myriam Hunink & Petros Pechlivanoglou, 2018. "Microsimulation Modeling for Health Decision Sciences Using R: A Tutorial," Medical Decision Making, , vol. 38(3), pages 400-422, April.
    2. Narinder Singh & Francesco Colangelo & Ilenia Farina, 2023. "Sustainable Non-Conventional Concrete 3D Printing—A Review," Sustainability, MDPI, vol. 15(13), pages 1-42, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Gong & Ting Xie & Yong Luo & Hui Guo & Jinlan Chen & Zhiping Tan & Yifeng Yang & Li Xie, 2021. "Comprehensive analysis of lncRNA biomarkers in kidney renal clear cell carcinoma by lncRNA-mediated ceRNA network," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-24, June.
    2. Trevor A. Sheldon, 1996. "Problems of using modelling in the economic evaluation of health care," Health Economics, John Wiley & Sons, Ltd., vol. 5(1), pages 1-11, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pharme:v:35:y:2017:i:8:d:10.1007_s40273-017-0510-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.