IDEAS home Printed from https://ideas.repec.org/a/spr/pardea/v2y2021i6d10.1007_s42985-021-00128-1.html
   My bibliography  Save this article

Evolving to non-round Weingarten spheres: integer linear Hopf flows

Author

Listed:
  • Brendan Guilfoyle

    (Munster Technological University, Kerry)

  • Wilhelm Klingenberg

    (University of Durham)

Abstract

In the 1950’s Hopf gave examples of non-round convex 2-spheres in Euclidean 3-space with rotational symmetry that satisfy a linear relationship between their principal curvatures. In this paper, we investigate conditions under which evolving a smooth convex rotationally symmetric sphere by a linear combination of its radii of curvature yields a Hopf sphere. When the coefficients of the flow have certain integer values, the fate of an initial sphere is entirely determined by the local geometry of its isolated umbilic points. A variety of behaviours is uncovered: convergence to round spheres and non-round Hopf spheres, as well as divergence to infinity. The critical quantity is the rate of vanishing of the astigmatism—the difference of the radii of curvature—at the isolated umbilic points. It is proven that the size of this quantity versus the coefficient in the flow function determines the fate of the evolution. The geometric setting for the equation is Radius of Curvature space, viewed as a pair of hyperbolic/AdS half-planes joined along their boundary, the umbilic horizon. A rotationally symmetric sphere determines a parameterized curve in this plane with end-points on the umbilic horizon. The slope of the curve at the umbilic horizon is linked by the Codazzi–Mainardi equations to the rate of vanishing of astigmatism, and for generic initial conditions can be used to determine the outcome of the flow. The slope can jump during the flow, and a number of examples are given: instant jumps of the initial slope, as well as umbilic circles that contract to points in finite time and ‘pop’ the slope. Finally, we present soliton-like solutions: curves that evolve under linear flows by mutual hyperbolic/AdS isometries (dilation and translation) of Radius of Curvature space. A forthcoming paper will apply these geometric ideas to non-linear curvature flows.

Suggested Citation

  • Brendan Guilfoyle & Wilhelm Klingenberg, 2021. "Evolving to non-round Weingarten spheres: integer linear Hopf flows," Partial Differential Equations and Applications, Springer, vol. 2(6), pages 1-26, December.
  • Handle: RePEc:spr:pardea:v:2:y:2021:i:6:d:10.1007_s42985-021-00128-1
    DOI: 10.1007/s42985-021-00128-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42985-021-00128-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42985-021-00128-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pardea:v:2:y:2021:i:6:d:10.1007_s42985-021-00128-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.