IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v92y2018i3d10.1007_s11069-018-3255-6.html
   My bibliography  Save this article

Seismic damage assessment based on regional synthetic ground motion dataset: a case study for Erzincan, Turkey

Author

Listed:
  • Shaghayegh Karimzadeh

    (Middle East Technical University)

  • Aysegul Askan

    (Middle East Technical University)

  • Murat Altug Erberik

    (Middle East Technical University)

  • Ahmet Yakut

    (Middle East Technical University)

Abstract

Estimation of seismic losses is a fundamental step in risk mitigation in urban regions. Structural damage patterns depend on the regional seismic properties and the local building vulnerability. In this study, a framework for seismic damage estimation is proposed where the local building fragilities are modeled based on a set of simulated ground motions in the region of interest. For this purpose, first, ground motion records are simulated for a set of scenario events using stochastic finite-fault methodology. Then, existing building stock is classified into specific building types represented with equivalent single-degree-of-freedom models. The response statistics of these models are evaluated through nonlinear time history analysis with the simulated ground motions. Fragility curves for the classified structural types are derived and discussed. The study area is Erzincan (Turkey), which is located on a pull-apart basin underlain by soft sediments in the conjunction of three active faults as right-lateral North Anatolian Fault, left-lateral North East Anatolian Fault, and left-lateral Ovacik Fault. Erzincan city center experienced devastating earthquakes in the past including the December 27, 1939 (Ms = 8.0) and the March 13, 1992 (Mw = 6.6) events. The application of the proposed method is performed to estimate the spatial distribution of the damage after the 1992 event. The estimated results are compared against the corresponding observed damage levels yielding a reasonable match in between. After the validation exercise, a potential scenario event of Mw = 7.0 is simulated in the study region. The corresponding damage distribution indicates a significant risk within the urban area.

Suggested Citation

  • Shaghayegh Karimzadeh & Aysegul Askan & Murat Altug Erberik & Ahmet Yakut, 2018. "Seismic damage assessment based on regional synthetic ground motion dataset: a case study for Erzincan, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1371-1397, July.
  • Handle: RePEc:spr:nathaz:v:92:y:2018:i:3:d:10.1007_s11069-018-3255-6
    DOI: 10.1007/s11069-018-3255-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3255-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3255-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen Yong & Chen Ling & Federico Güendel & Ota Kulhánek & Li Juan, 2002. "Seismic Hazard and Loss Estimation for Central America," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 25(2), pages 161-175, February.
    2. Meng-Hsun Hsieh & Bing-Jean Lee & Tsu-Chiang Lei & Jer-Yan Lin, 2013. "Development of medium- and low-rise reinforced concrete building fragility curves based on Chi-Chi Earthquake data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 695-728, October.
    3. A. Kappos & K. Stylianidis & K. Pitilakis, 1998. "Development of Seismic Risk Scenarios Based on a Hybrid Method of Vulnerability Assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 17(2), pages 177-192, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhitao Fei & Xiaodong Guo & Janes Ouma Odongo & Donghui Ma & Yuanyuan Ren & Jiajia Wu & Wei Wang & Junyi Zhu, 2023. "A Seismic Fragility Assessment Method for Urban Function Spatial Units: A Case Study of Xuzhou City," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    2. Fatma Yerlikaya-Özkurt & Aysegul Askan, 2020. "Prediction of potential seismic damage using classification and regression trees: a case study on earthquake damage databases from Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3163-3180, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadreza Vafaei & Sophia C. Alih, 2018. "Seismic vulnerability of air traffic control towers," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 803-822, January.
    2. Hung-Chih Hung & Ming-Chin Ho & Yi-Jie Chen & Chang-Yi Chian & Su-Ying Chen, 2013. "Integrating long-term seismic risk changes into improving emergency response and land-use planning: a case study for the Hsinchu City, Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 491-508, October.
    3. Andreas Kappos & E. Dimitrakopoulos, 2008. "Feasibility of pre-earthquake strengthening of buildings based on cost-benefit and life-cycle cost analysis, with the aid of fragility curves," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(1), pages 33-54, April.
    4. Max Wyss & Azm Al-Homoud, 2004. "Scenarios of Seismic Risk in the United Arab Emirates, an Approximate Estimate," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 32(3), pages 375-393, July.
    5. Rita Der Sarkissian & Chadi Abdallah & Jean-Marc Zaninetti & Sara Najem, 2020. "Modelling intra-dependencies to assess road network resilience to natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 121-137, August.
    6. Naveed Ahmad & Qaisar Ali & Helen Crowley & Rui Pinho, 2014. "Earthquake loss estimation of residential buildings in Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1889-1955, September.
    7. Betül Şengezer & Atilla Ansal, 2007. "Probabilistic evaluation of observed earthquake damage data in Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(2), pages 305-326, February.
    8. Maria Bostenaru Dan, 2018. "Decision Making Based on Benefit-Costs Analysis: Costs of Preventive Retrofit versus Costs of Repair after Earthquake Hazards," Sustainability, MDPI, vol. 10(5), pages 1-26, May.
    9. Seda Kundak, 2004. "Economic loss estimation for earthquake hazard in Istanbul," ERSA conference papers ersa04p196, European Regional Science Association.
    10. Antonios Pomonis, 2002. "The Mount Parnitha (Athens) Earthquake of September 7, 1999: A Disaster Management Perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 27(1), pages 171-199, October.
    11. Georgios Deligiannakis & Alexandros Zimbidis & Ioannis Papanikolaou, 2023. "Earthquake loss and Solvency Capital Requirement calculation using a fault-specific catastrophe model," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(4), pages 821-846, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:92:y:2018:i:3:d:10.1007_s11069-018-3255-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.