IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v88y2017i2d10.1007_s11069-017-2898-z.html
   My bibliography  Save this article

Site-specific probabilistic seismic hazard analysis for northern part of the Qeshm Island, Iran

Author

Listed:
  • Ali Kavand

    (University of Tehran)

  • Hamid Alielahi

    (Islamic Azad University)

Abstract

This paper presents results of a site-specific probabilistic seismic hazard analysis for northern part of the Qeshm Island, one the most seismic prone areas of Iran. Seismotectonic and seismicity properties of seismic sources in the study area were characterized and used for evaluation of various strong ground motion parameters implementing the classical Cornell’s PSHA approach. The results show that peak rock accelerations for 475-year return period are 0.4 and 0.27 g, respectively, for 84th and 50th percentiles while being about 0.37 and 0.61 g for 2475-year return period. These values are slightly smaller than those read from national seismic zonation maps which can be attributed to the considered conservatism for development of such design maps. In order to incorporate local site conditions, a series of dynamic site response analyses based on the equivalent linear approach were also employed. The results indicate that the presence of soft subsurface deposits at the site significantly alters the fundamental characteristics of the response spectra. The obtained median (50th percentile) peak ground accelerations for 975-year return period range between 0.49 and 0.54 g at different locations in the study site showing minor amplifications relative to their corresponding bedrock acceleration of 0.48 g. Finally, the obtained site-specific spectrum was compared with the standard spectrum mandated by the design codes. In this regard, the agreement was found to be reasonable at period ranges shorter than about 0.5 s, while the differences were more obvious at longer periods. This reveals the need for implementation of site-specific design spectrum to avoid underestimation or overestimation of seismic forces for designing critically important structures especially when softer deposits are encountered.

Suggested Citation

  • Ali Kavand & Hamid Alielahi, 2017. "Site-specific probabilistic seismic hazard analysis for northern part of the Qeshm Island, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 919-946, September.
  • Handle: RePEc:spr:nathaz:v:88:y:2017:i:2:d:10.1007_s11069-017-2898-z
    DOI: 10.1007/s11069-017-2898-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2898-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2898-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zahid Khan & Magdi El-Emam & Muhammad Irfan & Jamal Abdalla, 2013. "Probabilistic seismic hazard analysis and spectral accelerations for United Arab Emirates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 569-589, June.
    2. Sarika Desai & Deepankar Choudhury, 2014. "Spatial variation of probabilistic seismic hazard for Mumbai and surrounding region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1873-1898, April.
    3. Nguyen Hong Phuong, 2001. "Probabilistic Seismic Hazard Assessment Along the Southeastern Coast of Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 24(1), pages 53-74, July.
    4. Hamza Güllü & Atilla Ansal & Aydin Özbay, 2008. "Seismic hazard studies for Gaziantep city in South Anatolia of Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 44(1), pages 19-50, January.
    5. Hamza Güllü & Murat Pala, 2014. "On the resonance effect by dynamic soil–structure interaction: a revelation study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 827-847, June.
    6. Arjun Sil & T. Sitharam & Sreevalsa Kolathayar, 2013. "Probabilistic seismic hazard analysis of Tripura and Mizoram states," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 1089-1108, September.
    7. Levent Selcuk & Azad Selcuk & Turgay Beyaz, 2010. "Probabilistic seismic hazard assessment for Lake Van basin, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(3), pages 949-965, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reshma Raskar Phule & Deepankar Choudhury, 2017. "Seismic reliability-based analysis and GIS mapping of cyclic mobility of clayey soils of Mumbai city, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 139-169, January.
    2. Magdi El-Emam & Zahid Khan & Jamal Abdalla & Muhammad Irfan, 2015. "Local site effects on seismic ground response of major cities in UAE," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 791-814, November.
    3. Abhishek Kumar & Olympa Baro & N. H. Harinarayan, 2016. "Obtaining the surface PGA from site response analyses based on globally recorded ground motions and matching with the codal values," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 543-572, March.
    4. G. Surve & Jyotima Kanaujia & Nitin Sharma, 2021. "Probabilistic seismic hazard assessment studies for Mumbai region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 575-600, May.
    5. Madan Mohan Rout & Josodhir Das & Kamal, 2018. "Probabilistic seismic hazard for Himalayan region using kernel estimation method (zone-free method)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 967-985, September.
    6. Sreevalsa Kolathayar, 2021. "Recent seismicity in Delhi and population exposure to seismic hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2621-2648, December.
    7. Avik Paul & Suvam Gupta & Sima Ghosh & Deepankar Choudhury, 2020. "Probabilistic assessment and study of earthquake recurrence models for entire Northeast region of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 15-45, May.
    8. Abhishek Kumar & Olympa Baro & N. H. Harinarayan, 2016. "Obtaining the surface PGA from site response analyses based on globally recorded ground motions and matching with the codal values," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 543-572, March.
    9. Abhishek Kumar & N. H. Harinarayan & Olympa Baro, 2017. "Nonlinear soil response to ground motions during different earthquakes in Nepal, to arrive at surface response spectra," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 13-33, May.
    10. Md. Zillur Rahman & Sumi Siddiqua & A. S. M. Maksud Kamal, 2020. "Seismic source modeling and probabilistic seismic hazard analysis for Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2489-2532, September.
    11. Phuong Nguyen & Que Bui & Xuyen Nguyen, 2012. "Investigation of earthquake tsunami sources, capable of affecting Vietnamese coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 311-327, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:88:y:2017:i:2:d:10.1007_s11069-017-2898-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.