IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v88y2017i1d10.1007_s11069-017-2861-z.html
   My bibliography  Save this article

An integrated relative risk assessment model for urban disaster loss in view of disaster system theory

Author

Listed:
  • Zijun Qie

    (Dalian University of Technology)

  • Lili Rong

    (Dalian University of Technology)

Abstract

Comprehensive risk evaluation of urban areas is important for disaster prevention and mitigation. Since disaster scenarios of urban areas are diverse and complex, the data are generally inadequate for understanding the absolute risk of disaster loss posed by any specific hazard or multi-hazards but adequate for identifying areas that are at relatively higher risk levels to some extent. Therefore, this paper focuses on modeling relative risk assessment for urban disaster loss. Based on disaster system theory, elements at risk and hazard-formative environments were determined as the crucial components to reflect risk discrepancies of different urban areas facing similar hazards. Furthermore, the critical path of interactions between components within the disaster system was constructed by introducing exposure and sensitivity as filtering processes. On this basis, a relative risk model for urban disaster loss assessment was constructed and applied to cities in Liaoning Province as an illustration. In addition, the results were represented and analyzed from multi-dimensions. A test for the uncertainties of the results indicates that this model shows a strong applicability for urban disaster loss relative risk assessment on the premise of accurate data concerning elements at risk and hazard-formative environments.

Suggested Citation

  • Zijun Qie & Lili Rong, 2017. "An integrated relative risk assessment model for urban disaster loss in view of disaster system theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 165-190, August.
  • Handle: RePEc:spr:nathaz:v:88:y:2017:i:1:d:10.1007_s11069-017-2861-z
    DOI: 10.1007/s11069-017-2861-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2861-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2861-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eugenio Valdano & Chiara Poletto & Armando Giovannini & Diana Palma & Lara Savini & Vittoria Colizza, 2015. "Predicting Epidemic Risk from Past Temporal Contact Data," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-19, March.
    2. Kaizhong Li & Shaohong Wu & Erfu Dai & Zhongchun Xu, 2012. "Flood loss analysis and quantitative risk assessment in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 737-760, September.
    3. L. Mili & Q. Qiu & A.G. Phadke, 2004. "Risk assessment of catastrophic failures in electric power systems," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 1(1), pages 38-63.
    4. Xianbo Li & Rui Zuo & Yanguo Teng & Jinsheng Wang & Bin Wang, 2015. "Development of Relative Risk Model for Regional Groundwater Risk Assessment: A Case Study in the Lower Liaohe River Plain, China," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-22, May.
    5. Alwang, Jeffrey & Siegel, Paul B. & Jorgensen, Steen L., 2001. "Vulnerability : a view from different disciplines," Social Protection Discussion Papers and Notes 23304, The World Bank.
    6. Natainia Lummen & Fumihiko Yamada, 2014. "Implementation of an integrated vulnerability and risk assessment model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 1085-1117, September.
    7. Maxx Dilley & Robert S. Chen & Uwe Deichmann & Arthur L. Lerner-Lam & Margaret Arnold, 2005. "Natural Disaster Hotspots: A Global Risk Analysis," World Bank Publications - Books, The World Bank Group, number 7376, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lihui Wu & Da Ma & Jinling Li, 2023. "Assessment of the Regional Vulnerability to Natural Disasters in China Based on DEA Model," Sustainability, MDPI, vol. 15(14), pages 1-12, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Geiß & Hannes Taubenböck, 2013. "Remote sensing contributing to assess earthquake risk: from a literature review towards a roadmap," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(1), pages 7-48, August.
    2. Ana Raquel Nunes, 2021. "Exploring the interactions between vulnerability, resilience and adaptation to extreme temperatures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2261-2293, December.
    3. Pujun Liang & Wei Xu & Yunjia Ma & Xiujuan Zhao & Lianjie Qin, 2017. "Increase of Elderly Population in the Rainstorm Hazard Areas of China," IJERPH, MDPI, vol. 14(9), pages 1-17, August.
    4. Freshwater, David, 2014. "Vulnerability and Resilience: Two Dimensions of Rurality," Staff Papers 174103, University of Kentucky, Department of Agricultural Economics.
    5. Xiaobing Yu & Hong Chen & Chenliang Li, 2019. "Evaluate Typhoon Disasters in 21st Century Maritime Silk Road by Super-Efficiency DEA," IJERPH, MDPI, vol. 16(9), pages 1-10, May.
    6. Maithili Ramachandran & K.S. Kavi Kumar & Brinda Viswanathan, 2006. "Vulnerability to Chronic Energy Deficiency: An Empirical Analysis of Women in Uttar Pradesh, India," Working Papers 2006-012, Madras School of Economics,Chennai,India.
    7. Nicolás Bronfman & Pamela Cisternas & Esperanza López-Vázquez & Luis Cifuentes, 2016. "Trust and risk perception of natural hazards: implications for risk preparedness in Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 307-327, March.
    8. Dapeng Huang & Renhe Zhang & Zhiguo Huo & Fei Mao & Youhao E & Wei Zheng, 2012. "An assessment of multidimensional flood vulnerability at the provincial scale in China based on the DEA method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1575-1586, November.
    9. Aistė Dirzytė & Ona Gražina Rakauskienė & Vaida Servetkienė, 2017. "Evaluation of resilience impact on socio-economic inequality," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 4(4), pages 489-501, June.
    10. Zhang, Hongliang & Antle, John, 2016. "Assessing Climate Vulnerability of Agricultural Systems Using High-order moments: A Case Study in the U.S. Pacific Northwest," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236233, Agricultural and Applied Economics Association.
    11. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    12. Aubin VIGNOBOUL, 2022. "The winds of inequalities: How hurricanes impact inequalities at the macro level?," LEO Working Papers / DR LEO 2986, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    13. Jun Wang & Zhenlou Chen & Shiyuan Xu & Beibei Hu, 2013. "Medium-scale natural disaster risk scenario analysis: a case study of Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1205-1220, March.
    14. Tsegaye Tadesse & Menghestab Haile & Gabriel Senay & Brian D. Wardlow & Cody L. Knutson, 2008. "The need for integration of drought monitoring tools for proactive food security management in sub‐Saharan Africa," Natural Resources Forum, Blackwell Publishing, vol. 32(4), pages 265-279, November.
    15. Jolanta Kryspin-Watson & John Pollner & Sonja Nieuwejaar, 2008. "Climate Change Adaptation in Europe and Central Asia," World Bank Publications - Reports 25985, The World Bank Group.
    16. Fatemeh Jalayer & Raffaele Risi & Francesco Paola & Maurizio Giugni & Gaetano Manfredi & Paolo Gasparini & Maria Topa & Nebyou Yonas & Kumelachew Yeshitela & Alemu Nebebe & Gina Cavan & Sarah Lindley , 2014. "Probabilistic GIS-based method for delineation of urban flooding risk hotspots," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 975-1001, September.
    17. Faraz S. Tehrani & Michele Calvello & Zhongqiang Liu & Limin Zhang & Suzanne Lacasse, 2022. "Machine learning and landslide studies: recent advances and applications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1197-1245, November.
    18. Nisar Ali Shah & Muhammad Shafique & Muhammad Ishfaq & Kamil Faisal & Mark Van der Meijde, 2023. "Integrated Approach for Landslide Risk Assessment Using Geoinformation Tools and Field Data in Hindukush Mountain Ranges, Northern Pakistan," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    19. Thilini Mahanama & Abootaleb Shirvani & Svetlozar Rachev, 2022. "A Natural Disasters Index," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(2), pages 263-284, April.
    20. Osawe, Osayanmon Wellington, 2013. "Livelihood Vulnerability and Migration Decision Making Nexus: The Case of Rural Farm Households in Nigeria," 2013 Fourth International Conference, September 22-25, 2013, Hammamet, Tunisia 161628, African Association of Agricultural Economists (AAAE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:88:y:2017:i:1:d:10.1007_s11069-017-2861-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.