IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v79y2015i3p2073-2099.html
   My bibliography  Save this article

A multivariate generalized linear tsunami fragility model for Kesennuma City based on maximum flow depths, velocities and debris impact, with evaluation of predictive accuracy

Author

Listed:
  • I. Charvet
  • A. Suppasri
  • H. Kimura
  • D. Sugawara
  • F. Imamura

Abstract

The recent losses caused by the unprecedented 2011 Great East Japan Tsunami disaster have stimulated further research efforts, notably in the mechanisms and probabilistic determination of tsunami-induced damage, in order to provide the necessary information for future risk assessment and mitigation. The stochastic approach typically adopts fragility functions, which express the probability that a building will reach or exceed a predefined damage level usually for one, sometimes several measures of tsunami intensity. However, improvements in the derivation of fragility functions are still needed in order to yield reliable predictions of tsunami damage to buildings. In particular, extensive disaggregated databases, as well as measures of tsunami intensity beyond the commonly used tsunami flow depth should be used to potentially capture variations in the data which have not been explained by previous models. This study proposes to derive fragility functions with additional intensity measures for the city of Kesennuma, which was extensively damaged during the 2011 tsunami and for which a large and disaggregated dataset of building damage is available. In addition to the surveyed tsunami flow depth, the numerically estimated flow velocities as well as a binary indicator of debris impact are included in the model and used simultaneously to estimate building damage probabilities. Following the recently proposed methodology for fragility estimation based on generalized linear models, which overcomes the shortcomings of classic linear regression in fragility analyses, ordinal regression is applied and the reliability of the model estimates is assessed using a proposed penalized accuracy measure, more suitable than the traditional classification error rate for ordinal models. In order to assess the predictive power of the model, penalized accuracy is estimated through a repeated tenfold cross-validation scheme. For the first time, multivariate tsunami fragility functions are derived and represented in the form of fragility surfaces. The results show that the model is able to predict tsunami damage with satisfactory predictive accuracy and that debris impact is a crucial factor in the determination of building collapse probabilities. Copyright The Author(s) 2015

Suggested Citation

  • I. Charvet & A. Suppasri & H. Kimura & D. Sugawara & F. Imamura, 2015. "A multivariate generalized linear tsunami fragility model for Kesennuma City based on maximum flow depths, velocities and debris impact, with evaluation of predictive accuracy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 2073-2099, December.
  • Handle: RePEc:spr:nathaz:v:79:y:2015:i:3:p:2073-2099
    DOI: 10.1007/s11069-015-1947-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1947-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1947-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. Rossetto & N. Peiris & A. Pomonis & S. Wilkinson & D. Re & R. Koo & S. Gallocher, 2007. "The Indian Ocean tsunami of December 26, 2004: observations in Sri Lanka and Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 42(1), pages 105-124, July.
    2. Kim, Ji-Hyun, 2009. "Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3735-3745, September.
    3. Natt Leelawat & Anawat Suppasri & Ingrid Charvet & Fumihiko Imamura, 2014. "Building damage from the 2011 Great East Japan tsunami: quantitative assessment of influential factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 449-471, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teresa Vera San Martín & Gary Rodriguez Rosado & Patricia Arreaga Vargas & Leonardo Gutierrez, 2018. "Population and building vulnerability assessment by possible worst-case tsunami scenarios in Salinas, Ecuador," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 275-297, August.
    2. James H. Williams & Thomas M. Wilson & Nick Horspool & Emily M. Lane & Matthew W. Hughes & Tim Davies & Lina Le & Finn Scheele, 2019. "Tsunami impact assessment: development of vulnerability matrix for critical infrastructure and application to Christchurch, New Zealand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1167-1211, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Norio Tanaka & Junji Yagisawa & Satoshi Yasuda, 2013. "Breaking pattern and critical breaking condition of Japanese pine trees on coastal sand dunes in huge tsunami caused by Great East Japan Earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 423-442, January.
    2. Airola, Antti & Pahikkala, Tapio & Waegeman, Willem & De Baets, Bernard & Salakoski, Tapio, 2011. "An experimental comparison of cross-validation techniques for estimating the area under the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1828-1844, April.
    3. John J Nay & Yevgeniy Vorobeychik, 2016. "Predicting Human Cooperation," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
    4. Matthew Tuson & Berwin Turlach & Kevin Murray & Mei Ruu Kok & Alistair Vickery & David Whyatt, 2021. "Predicting Future Geographic Hotspots of Potentially Preventable Hospitalisations Using All Subset Model Selection and Repeated K-Fold Cross-Validation," IJERPH, MDPI, vol. 18(19), pages 1-21, September.
    5. Gonzalo Perez-de-la-Cruz & Guillermina Eslava-Gomez, 2019. "Discriminant analysis for discrete variables derived from a tree-structured graphical model," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 855-876, December.
    6. Khan, Jafar A. & Van Aelst, Stefan & Zamar, Ruben H., 2010. "Fast robust estimation of prediction error based on resampling," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3121-3130, December.
    7. Mark Lown & Michael Brown & Chloë Brown & Arthur M Yue & Benoy N Shah & Simon J Corbett & George Lewith & Beth Stuart & Michael Moore & Paul Little, 2020. "Machine learning detection of Atrial Fibrillation using wearable technology," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-9, January.
    8. Piccarreta, Raffaella, 2010. "Binary trees for dissimilarity data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1516-1524, June.
    9. Ha, Tran Vinh & Asada, Takumi & Arimura, Mikiharu, 2019. "Determination of the influence factors on household vehicle ownership patterns in Phnom Penh using statistical and machine learning methods," Journal of Transport Geography, Elsevier, vol. 78(C), pages 70-86.
    10. Zhengnan Huang & Hongjiu Zhang & Jonathan Boss & Stephen A Goutman & Bhramar Mukherjee & Ivo D Dinov & Yuanfang Guan & for the Pooled Resource Open-Access ALS Clinical Trials Consortium, 2017. "Complete hazard ranking to analyze right-censored data: An ALS survival study," PLOS Computational Biology, Public Library of Science, vol. 13(12), pages 1-21, December.
    11. Xue, Jing-Hao & Titterington, D. Michael, 2010. "On the generative-discriminative tradeoff approach: Interpretation, asymptotic efficiency and classification performance," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 438-451, February.
    12. Gianluca Gazzola & Myong K. Jeong, 2021. "Support vector regression for polyhedral and missing data," Annals of Operations Research, Springer, vol. 303(1), pages 483-506, August.
    13. Ayed Alwadain & Rao Faizan Ali & Amgad Muneer, 2023. "Estimating Financial Fraud through Transaction-Level Features and Machine Learning," Mathematics, MDPI, vol. 11(5), pages 1-15, February.
    14. John J. Nay & Yevgeniy Vorobeychik, 2016. "Predicting Human Cooperation," Papers 1601.07792, arXiv.org, revised Apr 2016.
    15. Jamal Dabbeek & Vitor Silva, 2020. "Modeling the residential building stock in the Middle East for multi-hazard risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 781-810, January.
    16. Shusaku Tsumoto & Tomohiro Kimura & Shoji Hirano, 2022. "Expectation–Maximization (EM) Clustering as a Preprocessing Method for Clinical Pathway Mining," The Review of Socionetwork Strategies, Springer, vol. 16(1), pages 25-52, April.
    17. Zachary K. Collier & Haobai Zhang & Bridgette Johnson, 2021. "Finite Mixture Modeling for Program Evaluation: Resampling and Pre-processing Approaches," Evaluation Review, , vol. 45(6), pages 309-333, December.
    18. Joshua Macabuag & Tiziana Rossetto & Ioanna Ioannou & Anawat Suppasri & Daisuke Sugawara & Bruno Adriano & Fumihiko Imamura & Ian Eames & Shunichi Koshimura, 2016. "A proposed methodology for deriving tsunami fragility functions for buildings using optimum intensity measures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1257-1285, November.
    19. Zhijian Wang & Likang Zheng & Junyuan Wang & Wenhua Du, 2019. "Research on Novel Bearing Fault Diagnosis Method Based on Improved Krill Herd Algorithm and Kernel Extreme Learning Machine," Complexity, Hindawi, vol. 2019, pages 1-19, November.
    20. U. Eidsvig & Z. Medina-Cetina & V. Kveldsvik & S. Glimsdal & C. Harbitz & F. Sandersen, 2011. "Risk assessment of a tsunamigenic rockslide at Åknes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(2), pages 529-545, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:79:y:2015:i:3:p:2073-2099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.