IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v75y2015i3p2467-2487.html
   My bibliography  Save this article

Urgent landslide susceptibility assessment in the 2013 Lushan earthquake-impacted area, Sichuan Province, China

Author

Listed:
  • Zhi-hua Yang
  • Heng-xing Lan
  • Xing Gao
  • Lang-ping Li
  • Yun-shan Meng
  • Yu-ming Wu

Abstract

The Lushan earthquake with magnitude M s 7.0 (M w 6.6, USGS) in Sichuan Province, China, triggered a large number of landslides, which seriously aggravated the earthquake’s destructive consequences. This paper mainly focuses on the methodology of the urgent landslide susceptibility assessment right after the earthquake. The detailed landslide inventory (including 5,688 landslides) is prepared by means of urgent post-earthquake landslide field survey, landslide remote sensing interpretation of multi-source remote sensing images including high-resolution unmanned aerial vehicle images and historical landslide archives. Ten remarkable causative factors for landslide occurrence have been selected to conduct the landslide susceptibility assessment, including earthquake intensity, landslide density and slope gradient. An integration assessment approach is developed to facilitate the effective urgent post-earthquake landslide susceptibility assessment using three methods: factor sensitivity analysis, analytical hierarchy process and factor-weighted overlay. Such integration can effectively reduce the subjectivity and uncertainty resulting from using single method. The validation evaluation using the area under curve suggests the landslide susceptibility assessment results have satisfactory accuracy, and the suggested methodology is effective for the urgent post-earthquake landslide susceptibility assessment. The study results reveal that earthquake intensity and slope gradient are the two most important causative factors for post-earthquake landslide occurrence in the Lushan earthquake-impacted area. The dominant slope gradient and slope aspect with relatively higher landslide frequency are 45°–50° and south-east direction, respectively. The intense earthquake impact increased the dominant slope gradient of landslide spatial distribution, and the thrust campaign of seismogenic fault with strike NE–SW made south-east direction as the dominant slope aspect of the landslide spatial distribution. The locations with very high and high landslide susceptibility are mainly distributed in the regions with higher earthquake intensity and adverse terrain conditions, such as Shuangshi town and Longmen town of Lushan county and Muping town of Baoxing county. The study results are expected to provide a beneficial reference for the landslide prevention and infrastructure reconstruction after the Lushan earthquake. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Zhi-hua Yang & Heng-xing Lan & Xing Gao & Lang-ping Li & Yun-shan Meng & Yu-ming Wu, 2015. "Urgent landslide susceptibility assessment in the 2013 Lushan earthquake-impacted area, Sichuan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2467-2487, February.
  • Handle: RePEc:spr:nathaz:v:75:y:2015:i:3:p:2467-2487
    DOI: 10.1007/s11069-014-1441-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1441-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1441-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maria Kouli & Constantinos Loupasakis & Pantelis Soupios & Filippos Vallianatos, 2010. "Landslide hazard zonation in high risk areas of Rethymno Prefecture, Crete Island, Greece," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(3), pages 599-621, March.
    2. A. Carrara & F. Guzzetti & M. Cardinali & P. Reichenbach, 1999. "Use of GIS Technology in the Prediction and Monitoring of Landslide Hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 20(2), pages 117-135, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang-Zhou Xu & Guo-Dong Song & Jie Liu & Wei-Qin Dang & Hang Gao & Zhen-Yi Liu & Hong-Wu Zhang, 2015. "Avalanche in Tuban: a hazard with no defense," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 2181-2187, December.
    2. Yiming Cao & Hengxing Lan & Langping Li, 2023. "Disaster Risk Assessment for Railways: Challenges and a Sustainable Promising Solution Based on BIM+GIS," Sustainability, MDPI, vol. 15(24), pages 1-27, December.
    3. Kai Ke & Yichen Zhang & Jiquan Zhang & Yanan Chen & Chenyang Wu & Zuoquan Nie & Junnan Wu, 2023. "Risk Assessment of Earthquake–Landslide Hazard Chain Based on CF-SVM and Newmark Model—Using Changbai Mountain as an Example," Land, MDPI, vol. 12(3), pages 1-20, March.
    4. Lina Han & Qing Ma & Feng Zhang & Yichen Zhang & Jiquan Zhang & Yongbin Bao & Jing Zhao, 2019. "Risk Assessment of An Earthquake-Collapse-Landslide Disaster Chain by Bayesian Network and Newmark Models," IJERPH, MDPI, vol. 16(18), pages 1-17, September.
    5. Jiwen An & Xianfu Bai & Jinghai Xu & Gaozhong Nie & Xiuying Wang, 2015. "Prediction of highway blockage caused by earthquake-induced landslides for improving earthquake emergency response," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 511-536, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge A. Salinas-Jasso & Juan C. Montalvo-Arrieta & José R. Chapa-Guerrero, 2020. "A dynamic stability analysis for the Olinalá landslide, northeastern Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1225-1248, July.
    2. Ali Yalcin & Fikri Bulut, 2007. "Landslide susceptibility mapping using GIS and digital photogrammetric techniques: a case study from Ardesen (NE-Turkey)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(1), pages 201-226, April.
    3. Serwan M. J. Baban & Deborah Thomas & Francis Canisius & Kamal J. Sant, 2008. "Managing development in the hillsides of Trinidad and Tobago using geoinformatics," Sustainable Development, John Wiley & Sons, Ltd., vol. 16(5), pages 314-328.
    4. Israr Ullah & Bilal Aslam & Syed Hassan Iqbal Ahmad Shah & Aqil Tariq & Shujing Qin & Muhammad Majeed & Hans-Balder Havenith, 2022. "An Integrated Approach of Machine Learning, Remote Sensing, and GIS Data for the Landslide Susceptibility Mapping," Land, MDPI, vol. 11(8), pages 1-20, August.
    5. Marko Sinčić & Sanja Bernat Gazibara & Martin Krkač & Hrvoje Lukačić & Snježana Mihalić Arbanas, 2022. "The Use of High-Resolution Remote Sensing Data in Preparation of Input Data for Large-Scale Landslide Hazard Assessments," Land, MDPI, vol. 11(8), pages 1-37, August.
    6. V. Che & M. Kervyn & G. Ernst & P. Trefois & S. Ayonghe & P. Jacobs & E. Ranst & C. Suh, 2011. "Systematic documentation of landslide events in Limbe area (Mt Cameroon Volcano, SW Cameroon): geometry, controlling, and triggering factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 47-74, October.
    7. Flavio Borfecchia & Gerardo Canio & Luigi Cecco & Alessandro Giocoli & Sergio Grauso & Luigi Porta & Sandro Martini & Maurizio Pollino & Ivan Roselli & Alessandro Zini, 2016. "Mapping the earthquake-induced landslide hazard around the main oil pipeline network of the Agri Valley (Basilicata, southern Italy) by means of two GIS-based modelling approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 759-777, March.
    8. Charalampos Kontoes & Constantinos Loupasakis & Ioannis Papoutsis & Stavroula Alatza & Eleftheria Poyiadji & Athanassios Ganas & Christina Psychogyiou & Mariza Kaskara & Sylvia Antoniadi & Natalia Spa, 2021. "Landslide Susceptibility Mapping of Central and Western Greece, Combining NGI and WoE Methods, with Remote Sensing and Ground Truth Data," Land, MDPI, vol. 10(4), pages 1-25, April.
    9. Rabin Chakrabortty & Subodh Chandra Pal & Mehebub Sahana & Ayan Mondal & Jie Dou & Binh Thai Pham & Ali P. Yunus, 2020. "Soil erosion potential hotspot zone identification using machine learning and statistical approaches in eastern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1259-1294, November.
    10. Mehrnoosh Jadda & Helmi Shafri & Shattri Mansor, 2011. "PFR model and GiT for landslide susceptibility mapping: a case study from Central Alborz, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 395-412, May.
    11. Wang Wensheng & Li Yueqing, 2012. "Hazard degree assessment of landslide using set pair analysis method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 367-379, January.
    12. Wei Wang & Chuanyin Zhang & Minzhang Hu & Qiang Yang & Shiming Liang & Shengjun Kang, 2019. "Monitoring and analysis of geological hazards in Three Gorges area based on load impact change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 611-622, June.
    13. Paul Sestraș & Ștefan Bilașco & Sanda Roșca & Sanda Naș & Mircea V. Bondrea & Raluca Gâlgău & Ioel Vereș & Tudor Sălăgean & Velibor Spalević & Sorin M. Cîmpeanu, 2019. "Landslides Susceptibility Assessment Based on GIS Statistical Bivariate Analysis in the Hills Surrounding a Metropolitan Area," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    14. Junnan Xiong & Wei Li & Hao Zhang & Weiming Cheng & Chongchong Ye & Yunliang Zhao, 2019. "Selected Environmental Assessment Model and Spatial Analysis Method to Explain Correlations in Environmental and Socio-Economic Data with Possible Application for Explaining the State of the Ecosystem," Sustainability, MDPI, vol. 11(17), pages 1-26, September.
    15. Frederico F. Ávila & Regina C. Alvalá & Rodolfo M. Mendes & Diogo J. Amore, 2021. "The influence of land use/land cover variability and rainfall intensity in triggering landslides: a back-analysis study via physically based models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 1139-1161, January.
    16. Paolo Tarolli & Giulia Sofia & Giancarlo Dalla Fontana, 2012. "Geomorphic features extraction from high-resolution topography: landslide crowns and bank erosion," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 65-83, March.
    17. Flavio Borfecchia & Gerardo Canio & Luigi Cecco & Alessandro Giocoli & Sergio Grauso & Luigi Porta & Sandro Martini & Maurizio Pollino & Ivan Roselli & Alessandro Zini, 2016. "Mapping the earthquake-induced landslide hazard around the main oil pipeline network of the Agri Valley (Basilicata, southern Italy) by means of two GIS-based modelling approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 759-777, March.
    18. Malcolm Anderson & Liz Holcombe & Rob Flory & Jean-Philippe Renaud, 2008. "Implementing low-cost landslide risk reduction: a pilot study in unplanned housing areas of the Caribbean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(3), pages 297-315, December.
    19. Gerardo Grelle & Antonietta Rossi & Paola Revellino & Luigi Guerriero & Francesco Maria Guadagno & Giuseppe Sappa, 2019. "Assessment of Debris-Flow Erosion and Deposit Areas by Morphometric Analysis and a GIS-Based Simplified Procedure: A Case Study of Paupisi in the Southern Apennines," Sustainability, MDPI, vol. 11(8), pages 1-20, April.
    20. G. Sakkas & I. Misailidis & N. Sakellariou & V. Kouskouna & G. Kaviris, 2016. "Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1873-1904, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:75:y:2015:i:3:p:2467-2487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.