IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v74y2014i1p55-74.html
   My bibliography  Save this article

Atmospheric mesoscale conditions during the Boothbay meteotsunami: a numerical sensitivity study using a high-resolution mesoscale model

Author

Listed:
  • Kristian Horvath
  • Ivica Vilibić

Abstract

The article aims to test the sensitivity of high-resolution mesoscale atmospheric model to fairly reproduce atmospheric processes that were present during the Boothbay Harbor meteotsunami on 28 October 2008. The simulations were performed by the Weather and Research Forecasting (WRF) model at 1-km horizontal grid spacing by varying initial conditions (ICs) and lateral boundary conditions (LBCs), nesting strategy, simulation lead time and microphysics and convective parameterizations. It seems that the simulations that used higher-resolution IC and LBC were more successful in reproduction of precipitation zone and surface pressure oscillations caused by internal gravity waves observed during the event. The results were very sensitive to the simulation lead time and to the choice of convective parameterization, while the choice of microphysics parameterization and the type of nesting strategy (one-way or two-way) was less important for reproducibility of the event. The success of the WRF model appears limited to very short-range forecasting, most advanced parameterizations, and very high-resolution grid spacing; therefore, the applicability of present atmospheric mesoscale models to future operational meteotsunami warning systems still has a lot of room for improvements. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Kristian Horvath & Ivica Vilibić, 2014. "Atmospheric mesoscale conditions during the Boothbay meteotsunami: a numerical sensitivity study using a high-resolution mesoscale model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 55-74, October.
  • Handle: RePEc:spr:nathaz:v:74:y:2014:i:1:p:55-74
    DOI: 10.1007/s11069-014-1055-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1055-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1055-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. I. Vilibić & K. Horvath & N. Strelec Mahović & S. Monserrat & M. Marcos & Á. Amores & I. Fine, 2014. "Atmospheric processes responsible for generation of the 2008 Boothbay meteotsunami," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 25-53, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivica Vilibić & Cléa Denamiel & Petra Zemunik & Sebastian Monserrat, 2021. "The Mediterranean and Black Sea meteotsunamis: an overview," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1223-1267, March.
    2. Gozde Guney Dogan & Efim Pelinovsky & Andrey Zaytsev & Ayse Duha Metin & Gulizar Ozyurt Tarakcioglu & Ahmet Cevdet Yalciner & Bora Yalciner & Ira Didenkulova, 2021. "Long wave generation and coastal amplification due to propagating atmospheric pressure disturbances," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1195-1221, March.
    3. David A. Williams & Kevin J. Horsburgh & David M. Schultz & Chris W. Hughes, 2021. "Proudman resonance with tides, bathymetry and variable atmospheric forcings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1169-1194, March.
    4. B. Mourre & A. Santana & A. Buils & L. Gautreau & M. Ličer & A. Jansà & B. Casas & B. Amengual & J. Tintoré, 2021. "On the potential of ensemble forecasting for the prediction of meteotsunamis in the Balearic Islands: sensitivity to atmospheric model parameterizations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1315-1336, March.
    5. Eric Geist & Uri Brink & Matthew Gove, 2014. "A framework for the probabilistic analysis of meteotsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 123-142, October.
    6. Petra Zemunik & Angelo Bonanno & Salvatore Mazzola & Giovanni Giacalone & Ignazio Fontana & Simona Genovese & Gualtiero Basilone & Julio Candela & Jadranka Šepić & Ivica Vilibić & Salvatore Aronica, 2021. "Observing meteotsunamis (“Marrobbio”) on the southwestern coast of Sicily," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1337-1363, March.
    7. Alex Sheremet & Uriah Gravois & Victor Shrira, 2016. "Observations of meteotsunami on the Louisiana shelf: a lone soliton with a soliton pack," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 471-492, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jadranka Šepić & Alexander Rabinovich, 2014. "Meteotsunami in the Great Lakes and on the Atlantic coast of the United States generated by the “derecho” of June 29–30, 2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 75-107, October.
    2. Mohammad Hossein Kazeminezhad & Ivica Vilibić & Cléa Denamiel & Parvin Ghafarian & Samaneh Negah, 2021. "Weather radar and ancillary observations of the convective system causing the northern Persian Gulf meteotsunami on 19 March 2017," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1747-1769, March.
    3. Emile Okal & Johan Visser & Coenraad Beer, 2014. "The Dwarskersbos, South Africa local tsunami of August 27, 1969: field survey and simulation as a meteorological event," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 251-268, October.
    4. Ivica Vilibić & Sebastian Monserrat & Alexander Rabinovich, 2014. "Meteorological tsunamis on the US East Coast and in other regions of the World Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 1-9, October.
    5. Wei Cheng & Juan Horrillo & Richards Sunny, 2022. "Numerical analysis of meteotsunamis in the Northeastern Gulf of Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1719-1734, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:74:y:2014:i:1:p:55-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.