IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v70y2014i1p237-274.html
   My bibliography  Save this article

Tsunami hazard assessment of Canada

Author

Listed:
  • Lucinda Leonard
  • Garry Rogers
  • Stéphane Mazzotti

Abstract

We present a preliminary probabilistic tsunami hazard assessment of Canadian coastlines from local and far-field, earthquake, and large submarine landslide sources. Analyses involve published historical, palaeotsunami and palaeoseismic data, modelling, and empirical relations between fault area, earthquake magnitude, and tsunami run-up. The cumulative estimated tsunami hazard for potentially damaging run-up (≥1.5 m) of the outer Pacific coastline is ~40–80 % in 50 years, respectively one and two orders of magnitude greater than the outer Atlantic (~1–15 %) and the Arctic (>1 %). For larger run-up with significant damage potential (≥3 m), Pacific hazard is ~10–30 % in 50 years, again much larger than both the Atlantic (~1–5 %) and Arctic (>1 %). For outer Pacific coastlines, the ≥1.5 m run-up hazard is dominated by far-field subduction zones, but the probability of run-up ≥3 m is highest for local megathrust sources, particularly the Cascadia subduction zone; thrust sources further north are also significant, as illustrated by the 2012 Haida Gwaii event. For Juan de Fuca and Georgia Straits, the Cascadia megathrust dominates the hazard at both levels. Tsunami hazard on the Atlantic coastline is dominated by poorly constrained far-field subduction sources; a lesser hazard is posed by near-field continental slope failures similar to the 1929 Grand Banks event. Tsunami hazard on the Arctic coastline is poorly constrained, but is likely dominated by continental slope failures; a hypothetical earthquake source beneath the Mackenzie delta requires further study. We highlight areas susceptible to locally damaging landslide-generated tsunamis, but do not quantify the hazard. Copyright Her Majesty the Queen in Right of Canada 2014

Suggested Citation

  • Lucinda Leonard & Garry Rogers & Stéphane Mazzotti, 2014. "Tsunami hazard assessment of Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 237-274, January.
  • Handle: RePEc:spr:nathaz:v:70:y:2014:i:1:p:237-274
    DOI: 10.1007/s11069-013-0809-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0809-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0809-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eric Geist & Tom Parsons, 2006. "Probabilistic Analysis of Tsunami Hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 37(3), pages 277-314, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. O. V. Novikova & A. I. Gorshkov, 2022. "Local tsunamigenic sources in Greece, identified by pattern recognition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1335-1348, September.
    2. Valentin Nigg & Stephan Wohlwend & Michael Hilbe & Benjamin Bellwald & Stefano C. Fabbri & Gregory F. Souza & Florian Donau & Reto Grischott & Michael Strasser & Flavio S. Anselmetti, 2021. "A tsunamigenic delta collapse and its associated tsunami deposits in and around Lake Sils, Switzerland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1069-1103, June.
    3. Tomoyuki Takabatake & Philippe St-Germain & Ioan Nistor & Jacob Stolle & Tomoya Shibayama, 2019. "Numerical modelling of coastal inundation from Cascadia Subduction Zone tsunamis and implications for coastal communities on western Vancouver Island, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(1), pages 267-291, August.
    4. Fatemeh Nemati & Lucinda Leonard & Richard Thomson & Gwyn Lintern & Soroush Kouhi, 2023. "Numerical modeling of a potential landslide-generated tsunami in the southern Strait of Georgia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 2029-2054, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Heidarzadeh & Moharram Pirooz & Nasser Zaker & Ahmet Yalciner, 2009. "Preliminary estimation of the tsunami hazards associated with the Makran subduction zone at the northwestern Indian Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(2), pages 229-243, February.
    2. Mohammad Heidarzadeh & Andrzej Kijko, 2011. "A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 577-593, March.
    3. Jin‐Feng Wang & Lian‐Fa Li, 2008. "Improving Tsunami Warning Systems with Remote Sensing and Geographical Information System Input," Risk Analysis, John Wiley & Sons, vol. 28(6), pages 1653-1668, December.
    4. Sascha Brune & Stefan Ladage & Andrey Babeyko & Christian Müller & Heidrun Kopp & Stephan Sobolev, 2010. "Submarine landslides at the eastern Sunda margin: observations and tsunami impact assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(2), pages 547-562, August.
    5. Ignacio Barranco & Vicente Gracia & Joan Pau Sierra & Hector Perea & Xavier Gironella, 2017. "Tsunami hazards in the Catalan Coast, a low-intensity seismic activity area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1273-1295, September.
    6. Byung-Ho Kim & Min-Jong Song & Yong-Sik Cho, 2022. "Safety Analysis of a Nuclear Power Plant against Unexpected Tsunamis," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    7. Anita Grezio & Warner Marzocchi & Laura Sandri & Paolo Gasparini, 2010. "A Bayesian procedure for Probabilistic Tsunami Hazard Assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(1), pages 159-174, April.
    8. Andrea Cerase & Lorenzo Cugliari, 2023. "Something Still Remains: Factors Affecting Tsunami Risk Perception on the Coasts Hit by the Reggio Calabria-Messina 1908 Event (Italy)," Sustainability, MDPI, vol. 15(3), pages 1-26, February.
    9. Carl Harbitz & Finn Løvholt & Hilmar Bungum, 2014. "Submarine landslide tsunamis: how extreme and how likely?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(3), pages 1341-1374, July.
    10. J. Wijetunge, 2010. "Numerical simulation and field survey of inundation due to 2004 Indian Ocean tsunami in Trincomalee, Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(1), pages 177-192, July.
    11. Hyoungsu Park & Daniel T. Cox & Andre R. Barbosa, 2018. "Probabilistic Tsunami Hazard Assessment (PTHA) for resilience assessment of a coastal community," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1117-1139, December.
    12. Eric Geist & Uri Brink & Matthew Gove, 2014. "A framework for the probabilistic analysis of meteotsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 123-142, October.
    13. James Knighton & Luis Bastidas, 2015. "A proposed probabilistic seismic tsunami hazard analysis methodology," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 699-723, August.
    14. Amin Rashidi & Zaher Hossein Shomali & Denys Dutykh & Nasser Keshavarz Farajkhah, 2020. "Tsunami hazard assessment in the Makran subduction zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 861-875, January.
    15. Sascha Brune & Andrey Babeyko & Christoph Gaedicke & Stefan Ladage, 2010. "Hazard assessment of underwater landslide-generated tsunamis: a case study in the Padang region, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(2), pages 205-218, May.
    16. Zhenhao Zhang & Changchun Luo & Zhenpeng Zhao, 2020. "Application of probabilistic method in maximum tsunami height prediction considering stochastic seabed topography," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2511-2530, December.
    17. David Burbidge & Phil Cummins, 2007. "Assessing the threat to Western Australia from tsunami generated by earthquakes along the Sunda Arc," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(3), pages 319-331, December.
    18. Madhurima Ganguly & Rahul Aynyas & Abhishek Nandan & Prasenjit Mondal, 2018. "Hazardous area map: an approach of sustainable urban planning and industrial development—a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1385-1405, April.
    19. Eric Geist & Tom Parsons, 2014. "Undersampling power-law size distributions: effect on the assessment of extreme natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 565-595, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:70:y:2014:i:1:p:237-274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.