IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v62y2012i3p991-1003.html
   My bibliography  Save this article

Thermal infrared anomalies as a precursor of strong earthquakes in the distant future

Author

Listed:
  • Qing-Lin Yao
  • Zu-Ji Qiang

Abstract

Satellite thermal infrared images contain valuable earthquake precursor information. Past studies concluded that such information appeared only a few days or dozens of days before an earthquake would occur. In our study, though, we observed that the time intervals between the thermal infrared precursor and an earthquake’s occurrence can be up to 10 years. An infrared image can also synchronously indicate the locations of additional future earthquakes with different epicenters within a region. The shape, area, intensity, and movement of thermal infrared anomaly areas are a combination of all the future strong earthquakes within a region. These distant future earthquakes are generally located near the edges, endpoints, or corners of the main structure, fine structures or periphery structures of a thermal infrared anomaly area and play a role in confining the anomaly area. There have not been any exceptions among the strong earthquakes we analyzed, which have included the 2011 Japan M w 9 event, the 2010 Yushu M S 7.1 event, the 2008 Wenchuan M S 8 event, and many other strong events following the 2004 Sumatra M S 9 event. Surprisingly, some of the earthquakes can outline an area of elevated temperature observed many months ago. If we can roughly locate these potential epicenters through the analysis of thermal infrared images and combining the analysis with other information, and then dynamically monitor them, it may be easier to observe the precursor of an earthquake and predict its occurrence. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Qing-Lin Yao & Zu-Ji Qiang, 2012. "Thermal infrared anomalies as a precursor of strong earthquakes in the distant future," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 991-1003, July.
  • Handle: RePEc:spr:nathaz:v:62:y:2012:i:3:p:991-1003
    DOI: 10.1007/s11069-012-0130-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0130-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0130-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qing-Lin Yao & Zu-Ji Qiang, 2010. "The elliptic stress thermal field prior to M S 7.3 Yutian, and M S 8.0 Wenchuan earthquakes in China in 2008," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(2), pages 307-322, August.
    2. Arun Saraf & Vineeta Rawat & Priyanka Banerjee & Swapnamita Choudhury & Santosh Panda & Sudipta Dasgupta & J. Das, 2008. "Satellite detection of earthquake thermal infrared precursors in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(1), pages 119-135, October.
    3. Vineeta Rawat & Arun Saraf & Josodhir Das & Kanika Sharma & Yazdana Shujat, 2011. "Anomalous land surface temperature and outgoing long-wave radiation observations prior to earthquakes in India and Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 33-46, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing-Lin Yao & Zu-Ji Qiang, 2010. "The elliptic stress thermal field prior to M S 7.3 Yutian, and M S 8.0 Wenchuan earthquakes in China in 2008," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(2), pages 307-322, August.
    2. Jiazheng Lu & Yu Liu & Guoyong Zhang & Bo Li & Lifu He & Jing Luo, 2018. "Partition dynamic threshold monitoring technology of wildfires near overhead transmission lines by satellite," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1327-1340, December.
    3. Richard Petritsch & Hubert Hasenauer, 2014. "Climate input parameters for real-time online risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(3), pages 1749-1762, February.
    4. Arun Saraf & Vineeta Rawat & Josodhir Das & Mohammed Zia & Kanika Sharma, 2012. "Satellite detection of thermal precursors of Yamnotri, Ravar and Dalbandin earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 861-872, March.
    5. Xueling Zhang & Alimujiang Kasimu & Hongwu Liang & Bohao Wei & Yimuranzi Aizizi, 2022. "Spatial and Temporal Variation of Land Surface Temperature and Its Spatially Heterogeneous Response in the Urban Agglomeration on the Northern Slopes of the Tianshan Mountains, Northwest China," IJERPH, MDPI, vol. 19(20), pages 1-21, October.
    6. Vineeta Rawat & Arun Saraf & Josodhir Das & Kanika Sharma & Yazdana Shujat, 2011. "Anomalous land surface temperature and outgoing long-wave radiation observations prior to earthquakes in India and Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 33-46, October.
    7. Chijoo Lee & Hyungjun Yang, 2018. "A system to detect potential fires using a thermographic camera," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 511-523, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:62:y:2012:i:3:p:991-1003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.