IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v57y2011i1p51-64.html
   My bibliography  Save this article

Role of crustal heterogeneity beneath Andaman–Nicobar Islands and its implications for coastal hazard

Author

Listed:
  • O. Mishra
  • D. Zhao
  • Chandan Ghosh
  • Z. Wang
  • O. Singh
  • Biman Ghosh
  • K. Mukherjee
  • D. Saha
  • G. Chakrabortty
  • S. Gaonkar

Abstract

The Andaman–Nicobar (A–N) Islands region has attracted many geo-scientists because of its unique location and complex geotectonic settings. The recent occurrence of tsunamis due to the megathrust tsunamigenic north Sumatra earthquake (Mw 9.3) with a series of aftershocks in the A–N region caused severe damage to the coastal regions of India and Indonesia. Several pieces of evidence suggest that the occurrence of earthquakes in the A–N region is related to its complex geodynamical processes. In this study, it has been inferred that deep-seated structural heterogeneities related to dehydration of the subducting Indian plate beneath the Island could have induced the process of brittle failure through crustal weakening to contribute immensely to the coastal hazard in the region. The present study based on 3-D P-wave tomography of the entire rupture zone of the A–N region using the aftershocks of the 2004 Sumatra–Andaman earthquake (Mw 9.3) clearly demonstrates the role of crustal heterogeneity in seismogenesis and in causing the strong shakings and tsunamis. The nature and extent of the imaged crustal heterogeneity beneath the A–N region may have facilitated the degree of damage and extent of coastal hazards in the region. The 3-D velocity heterogeneities reflect asperities that manifest what type of seismogenic layers exist beneath the region to dictate the size of earthquakes and thereby they help to assess the extent of earthquake vulnerability in the coastal regions. The inference of this study may be used as one of the potential inputs for assessment of seismic vulnerability to the region, which may be considered for evolving earthquake hazard mitigation model for the coastal areas of the Andaman–Nicobar Islands region. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • O. Mishra & D. Zhao & Chandan Ghosh & Z. Wang & O. Singh & Biman Ghosh & K. Mukherjee & D. Saha & G. Chakrabortty & S. Gaonkar, 2011. "Role of crustal heterogeneity beneath Andaman–Nicobar Islands and its implications for coastal hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(1), pages 51-64, April.
  • Handle: RePEc:spr:nathaz:v:57:y:2011:i:1:p:51-64
    DOI: 10.1007/s11069-010-9678-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-010-9678-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-010-9678-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alan T. Linde & I. Selwyn Sacks, 1998. "Triggering of volcanic eruptions," Nature, Nature, vol. 395(6705), pages 888-890, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Som & Ashim Saha & Vijay Shivgotra, 2014. "Post-2004 mega-earthquake temporal velocity variation at Andaman Islands from GPS measurements," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 1051-1062, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. Surve & G. Mohan, 2012. "Possible evidence of remotely triggered and delayed seismicity due to the 2001 Bhuj earthquake (Mw = 7.6) in western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 299-310, October.
    2. G. Babayev & A. Tibaldi & F. Bonali & F. Kadirov, 2014. "Evaluation of earthquake-induced strain in promoting mud eruptions: the case of Shamakhi–Gobustan–Absheron areas, Azerbaijan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 789-808, June.
    3. Howard Roscoe, 2001. "The Risk of Large Volcanic Eruptions and the Impact of this Risk on Future Ozone Depletion," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 23(2), pages 231-246, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:57:y:2011:i:1:p:51-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.