IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v18y1998i1p27-55.html
   My bibliography  Save this article

Generation of Meteorological Tsunamis (Large Amplitude Seiches) Near the Balearic and Kuril Islands

Author

Listed:
  • Alexander Rabinovich
  • Sebastian Monserrat

Abstract

Extreme atmosphere-induced seiche oscillations occasionally occur in specific inlets and bays of the world ocean causing severe damage to coastal areas, ships and port constructions. Ciutadella inlet (Menorca Island, Western Mediterranean) can be singled out as a place where such large seiches, locally known as rissaga, are quite common. Similar (although weaker) oscillations are also regularly observed in bays of Shikotan Island (South Kuril Islands, northwestern Pacific). Several spectacular events in these regions, identified in the first part of this study (Rabinovich and Monserrat, 1996), are analysed to determine the atmospheric parameters responsible for the generation of large-amplitude seiches. Their generation mechanism was shown to be quite different from that causing ordinary background oscillations. Coincidence of some external factors and certain resonance effects seem to be necessary to produce the destructive waves. In particular, rissaga waves in Ciutadella inlet were found to be related to significant atmospheric disturbances propagating from the southwest, coinciding with the orientation of the inlet, and having a phase speed of about 3 m/s, which is close to the phase speed of long waves offshore from Menorca. Pronounced resonant properties of the inner basin strongly amplify incoming waves in Ciutadella inlet. In contrast, the bays of the northwestern coast of Shikotan Island are protected from normally incident atmosphere-induced waves by the elongated Kunashir Island, hence the whole situation there is not so favorable for the excitation of large seiches. Copyright Kluwer Academic Publishers 1998

Suggested Citation

  • Alexander Rabinovich & Sebastian Monserrat, 1998. "Generation of Meteorological Tsunamis (Large Amplitude Seiches) Near the Balearic and Kuril Islands," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 18(1), pages 27-55, July.
  • Handle: RePEc:spr:nathaz:v:18:y:1998:i:1:p:27-55
    DOI: 10.1023/A:1008096627047
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1008096627047
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1008096627047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefano Tinti & Alessandra Maramai & Laura Graziani, 2004. "The New Catalogue of Italian Tsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(3), pages 439-465, November.
    2. Ivica Vilibić & Sebastian Monserrat & Alexander Rabinovich, 2014. "Meteorological tsunamis on the US East Coast and in other regions of the World Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 1-9, October.
    3. Maria-del-Mar Vich & Romualdo Romero, 2021. "Forecasting meteotsunamis with neural networks: the case of Ciutadella harbour (Balearic Islands)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1299-1314, March.
    4. Ivica Vilibić & Hrvoje Mihanović & Francois Charrayre, 2014. "Assessing meteotsunami potential of high-frequency air pressure oscillations observed in the middle Adriatic," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 217-232, October.
    5. Rabinovich, M.I. & Varona, P. & Torres, J.J. & Huerta, R. & Abarbanel, H.D.I., 1999. "Slow dynamics and regularization phenomena in ensembles of chaotic neurons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 263(1), pages 405-414.
    6. Charitha Pattiaratchi & E. Wijeratne, 2014. "Observations of meteorological tsunamis along the south-west Australian coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 281-303, October.
    7. Ivica Vilibić & Cléa Denamiel & Petra Zemunik & Sebastian Monserrat, 2021. "The Mediterranean and Black Sea meteotsunamis: an overview," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1223-1267, March.
    8. Emile Okal & Johan Visser & Coenraad Beer, 2014. "The Dwarskersbos, South Africa local tsunami of August 27, 1969: field survey and simulation as a meteorological event," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 251-268, October.
    9. Mohammad Heidarzadeh & Alexander B. Rabinovich, 2021. "Combined hazard of typhoon-generated meteorological tsunamis and storm surges along the coast of Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1639-1672, March.
    10. Yang Wang & Xiaojing Niu & Zhengdong Yu & Xingyu Gao, 2021. "Numerical study on a possible cause of the ‘strange tide’ in the coastal area of Jiangsu Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1687-1701, March.
    11. Agusti Jansà & Climent Ramis, 2021. "The Balearic rissaga: from pioneering research to present-day knowledge," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1269-1297, March.
    12. Ivica Vilibić & Alexander B. Rabinovich & Eric J. Anderson, 2021. "Special issue on the global perspective on meteotsunami science: editorial," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1087-1104, March.
    13. B. Mourre & A. Santana & A. Buils & L. Gautreau & M. Ličer & A. Jansà & B. Casas & B. Amengual & J. Tintoré, 2021. "On the potential of ensemble forecasting for the prediction of meteotsunamis in the Balearic Islands: sensitivity to atmospheric model parameterizations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1315-1336, March.
    14. Jadranka Šepić & Alexander Rabinovich, 2014. "Meteotsunami in the Great Lakes and on the Atlantic coast of the United States generated by the “derecho” of June 29–30, 2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 75-107, October.
    15. Eric Geist & Uri Brink & Matthew Gove, 2014. "A framework for the probabilistic analysis of meteotsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 123-142, October.
    16. N. Kurian & N. Nirupama & M. Baba & K. Thomas, 2009. "Coastal flooding due to synoptic scale, meso-scale and remote forcings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(2), pages 259-273, February.
    17. Myung-Seok Kim & Hyunmin Eom & Sung Hyup You & Seung-Buhm Woo, 2021. "Real-time pressure disturbance monitoring system in the Yellow Sea: pilot test during the period of March to April 2018," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1703-1728, March.
    18. Alex Sheremet & Uriah Gravois & Victor Shrira, 2016. "Observations of meteotsunami on the Louisiana shelf: a lone soliton with a soliton pack," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 471-492, November.
    19. Amir Salaree & Reza Mansouri & Emile A. Okal, 2018. "The intriguing tsunami of 19 March 2017 at Bandar Dayyer, Iran: field survey and simulations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1277-1307, February.
    20. M. Solovieva & A. Rozhnoi & S. Shalimov & G. Shevchenko & P. F. Biagi & V. Fedun, 2021. "The lower ionosphere disturbances observed during the chain of the meteotsunamis in the Mediterranean Sea in June 2014," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1383-1396, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:18:y:1998:i:1:p:27-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.