IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v119y2023i3d10.1007_s11069-023-06198-1.html
   My bibliography  Save this article

Susceptibility assessment of earth fissure related to groundwater extraction using machine learning methods combined with weights of evidence

Author

Listed:
  • Aihua Wei

    (Hebei GEO University
    Hebei GEO University
    Hebei GEO University)

  • Yuanyao Chen

    (Hebei GEO University)

  • Haijun Zhao

    (Chinese Academy of Sciences)

  • Zhao Liu

    (Hebei GEO University
    Hebei GEO University
    Hebei GEO University)

  • Likui Yang

    (Hebei GEO University
    Hebei GEO University
    Hebei GEO University)

  • Liangdong Yan

    (Hebei GEO University
    Hebei GEO University
    Hebei GEO University)

  • Hui Li

    (Hebei Geo-Environment Monitoring)

Abstract

The susceptibility of a region to the occurrence of earth fissures is often used to assess the probability of geohazards across an area. The main objective of this study is to discuss and explore machine learning methods for earth fissure susceptibility assessment, including the single machine learning method and the ensemble model. A total of ten affecting factors including elevation, slope, topographic wetness index, rainfall, drawdown of groundwater level, the thickness of Quaternary sediments, distance from rivers, distance to faults, normalized difference vegetation index, and land use were selected. The weight of evidence (WoE) method was first used to determine the quantitative relationship between an earth fissure and its related parameters. The WoE, support vector machine learning combined with the WoE (SVM +WoE), and the random forest combined with the WoE (RF+ WoE) model were then used to classify earth fissure susceptibility. The area under the curve and root-mean-squared error was used to evaluate the three methods and to determine the most optimal approach for earth fissure susceptibility map. The results indicated that the RF+ WoE model had the highest predictive accuracy, followed by the SVM+WoE and the WoE models. The study area was finally classified into regions with very high, high, moderate, low, and very low susceptibility, accounting for 11.20%, 15.66%, 24.13%, 32.60%, and 16.07% of the area. Susceptibility mapping can apply machine learning methods combined with the WoE method for earth fissure assessment.

Suggested Citation

  • Aihua Wei & Yuanyao Chen & Haijun Zhao & Zhao Liu & Likui Yang & Liangdong Yan & Hui Li, 2023. "Susceptibility assessment of earth fissure related to groundwater extraction using machine learning methods combined with weights of evidence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(3), pages 2089-2111, December.
  • Handle: RePEc:spr:nathaz:v:119:y:2023:i:3:d:10.1007_s11069-023-06198-1
    DOI: 10.1007/s11069-023-06198-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06198-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06198-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:119:y:2023:i:3:d:10.1007_s11069-023-06198-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.