IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v117y2023i1d10.1007_s11069-023-05863-9.html
   My bibliography  Save this article

Regression relationships for conversion of body wave and surface wave magnitudes toward Das magnitude scale, Mwg

Author

Listed:
  • Ranjit Das

    (Universidad Católica del Norte
    National Research Center for Integrated Natural Disaster Management)

  • Claudio Menesis

    (Universidad Católica del Norte)

  • Diego Urrutia

    (Universidad Católica del Norte)

Abstract

A reliable and standardized estimation of earthquake size is a fundamental requirement for all tectonophysical and engineering applications. Several investigations raised questions about the determinations of smaller and intermediate earthquakes using Mw scale. Recent investigations (Das et al. in Bull Seismol Soc Am 108(4):1995–2007, 2018b) show that the moment magnitude scale Mw is not applicable for lower and intermediate ranges throughout the world and does not efficiently represent the seismic source potential due to its dependence on surface wave magnitudes; therefore, an observed seismic moment (M0)-based magnitude scale, Mwg, which smoothly connects seismic source processes and highly correlates with seismic-radiated energy (Es) compared to the Mw scale is suggested. With the goal of constructing a homogeneous data set of Mwg to be used for earthquake-related studies, relationships for body wave (mb) and surface wave magnitudes (Ms) toward Mwg have been developed using regression methodologies such as generalized orthogonal regression (GOR) (GOR1: GOR relation is expressed in terms of the observed independent variable; and GOR2: GOR relation is used inappropriately in terms of theoretical true point of GOR line) and standard least-square regression (SLR). In order to establish regression relationships, global data have been considered during 1976–2014 for mb magnitudes of 524,790 events from the International Seismological Centre (ISC) and 326,201 events from the National Earthquake Information Center (NEIC), Ms magnitudes of 111,443 events from ISC along with 41,810 Mwg events data from the Global Centroid Moment Tensor (GCMT). Scaling relationships have been obtained between mb and Mwg for magnitude range 4.5 ≤ mb ≤ 6.2 for ISC and NEIC events using GOR1, GOR2 and SLR methodologies. Furthermore, scaling relationships between Ms and Mwg have been obtained for magnitude ranges 3.0 ≤ Ms ≤ 6.1 and 6.2 ≤ Ms ≤ 8.4 using GOR1, GOR2 and SLR procedures. Our analysis found that GOR1 provides improved estimates of dependent variable compared to GOR2 and SLR on the basis of statistical parameters (mainly uncertainty on slope and intercept, RMSE and Rxy) as reported in Das et al. (2018b). The derived global scaling relationships would be helpful for various seismological applications such as seismicity, seismic hazard and Risk assessment studies.

Suggested Citation

  • Ranjit Das & Claudio Menesis & Diego Urrutia, 2023. "Regression relationships for conversion of body wave and surface wave magnitudes toward Das magnitude scale, Mwg," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 365-380, May.
  • Handle: RePEc:spr:nathaz:v:117:y:2023:i:1:d:10.1007_s11069-023-05863-9
    DOI: 10.1007/s11069-023-05863-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-05863-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-05863-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ranjit Das & H. Wason & M. Sharma, 2011. "Global regression relations for conversion of surface wave and body wave magnitudes to moment magnitude," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 801-810, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masoud Mojarab & Nazi Norouzi & Mahdokht Bayati & Zeinab Asadi & Mohamad Eslami & Mohsen Ghafory-Ashtiany & Abdul-Latif Helaly & Sara Khoshnevis, 2023. "Assessment of seismic hazard including equivalent-linear soil response analysis for Dhaka Metropolitan Region, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 3145-3180, July.
    2. Amit Shiuly & J. Narayan, 2012. "Deterministic seismic microzonation of Kolkata city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 223-240, January.
    3. V. A. Pavlenko & A. Kijko, 2019. "Comparative study of three probabilistic methods for seismic hazard analysis: case studies of Sochi and Kamchatka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 775-791, June.
    4. Sankar Kumar Nath & Suman Mandal & Manik Adhikari & Soumya Kanti Maiti, 2017. "A unified earthquake catalogue for South Asia covering the period 1900–2014," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1787-1810, February.
    5. Rahul Sinha & Rajib Sarkar, 2020. "Seismic Hazard Assessment of Dhanbad City, India, by deterministic approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1857-1880, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:117:y:2023:i:1:d:10.1007_s11069-023-05863-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.