IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v109y2021i1d10.1007_s11069-021-04833-3.html
   My bibliography  Save this article

Impact of INSAT-3D radiance data assimilation using WRF 3DVAR on simulation of Indian summer monsoon and high-resolution rainfall forecast over hilly terrain

Author

Listed:
  • Rekha Bharali Gogoi

    (North Eastern Space Applications Center)

  • S. S. Kundu

    (North Eastern Space Applications Center)

  • P. L. N. Raju

    (North Eastern Space Applications Center)

Abstract

This study describes the impact of assimilation of INSAT-3D radiances data from both imager and sounder for Indian summer monsoon simulation and rainfall forecast over a hilly terrain using Weather Research Forecast model and its three-dimensional variational data assimilation (3DVAR) technique. The assimilation experiments conducted for the whole month of July 2016 reveal the superior impact of radiance data assimilation (DA) on analysis and forecast of the vertical profile of wind and temperature than the conventional DA experiment. Compared to the rest of the experiments, the imager DA experiment significantly improves the wind forecasts throughout the troposphere and ameliorates the temperature forecasts from 950 to 450 hPa. The sounder DA shows more improvement in the upper-level temperature forecast compared to the imager DA experiment. In addition, the spatial representation of low-level jet, temperature and moisture fields shows more relative improvement in the experiments with radiance DA than conventional DA experiments. While the impact of imager DA is superior for low-level jet forecast, the sounder DA reveals a more accurate tropospheric temperature and relative humidity forecast compared to the rest of the experiment. The rainfall forecast has also improved significantly with radiance DA over the Indian continent, mainly in India's northern, eastern and northeastern regions. Further, India’s northeastern region’s high-resolution rainfall forecast illustrates improvement using INSAT-3D radiance DA from both imager and sounder together compared to only conventional DA.

Suggested Citation

  • Rekha Bharali Gogoi & S. S. Kundu & P. L. N. Raju, 2021. "Impact of INSAT-3D radiance data assimilation using WRF 3DVAR on simulation of Indian summer monsoon and high-resolution rainfall forecast over hilly terrain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 221-236, October.
  • Handle: RePEc:spr:nathaz:v:109:y:2021:i:1:d:10.1007_s11069-021-04833-3
    DOI: 10.1007/s11069-021-04833-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04833-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04833-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:109:y:2021:i:1:d:10.1007_s11069-021-04833-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.