IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v82y2019i1d10.1007_s00184-018-0678-8.html
   My bibliography  Save this article

Quantile-based reliability aspects of cumulative Tsallis entropy in past lifetime

Author

Listed:
  • Aswathy S. Krishnan

    (Cochin University of Science and Technology)

  • S. M. Sunoj

    (Cochin University of Science and Technology)

  • P. G. Sankaran

    (Cochin University of Science and Technology)

Abstract

Measure of uncertainty in past lifetime plays an important role in different areas such as information theory, reliability theory, survival analysis, economics, business, forensic science and other related fields. In this paper, we propose a cumulative Tsallis entropy in past lifetime based on quantile function. We obtain different characterizations based on the proposed measure and quantile-based reliability measures. We also study the quantile-based cumulative Tsallis entropy of order statistics in past lifetime.

Suggested Citation

  • Aswathy S. Krishnan & S. M. Sunoj & P. G. Sankaran, 2019. "Quantile-based reliability aspects of cumulative Tsallis entropy in past lifetime," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 17-38, January.
  • Handle: RePEc:spr:metrik:v:82:y:2019:i:1:d:10.1007_s00184-018-0678-8
    DOI: 10.1007/s00184-018-0678-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-018-0678-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-018-0678-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sunoj, S.M. & Sankaran, P.G., 2012. "Quantile based entropy function," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1049-1053.
    2. Calì, Camilla & Longobardi, Maria & Ahmadi, Jafar, 2017. "Some properties of cumulative Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 1012-1021.
    3. Sunoj, S.M. & Sankaran, P.G. & Nanda, Asok K., 2013. "Quantile based entropy function in past lifetime," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 366-372.
    4. Mathai, A.M. & Haubold, H.J., 2007. "Pathway model, superstatistics, Tsallis statistics, and a generalized measure of entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(1), pages 110-122.
    5. Vikas Kumar, 2017. "Characterization results based on dynamic Tsallis cumulative residual entropy," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(17), pages 8343-8354, September.
    6. Kumar, Vikas, 2016. "Some results on Tsallis entropy measure and k-record values," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 667-673.
    7. Athanasios Sachlas & Takis Papaioannou, 2014. "Residual and Past Entropy in Actuarial Science and Survival Models," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 79-99, March.
    8. P. G. Sankaran & S. M. Sunoj, 2017. "Quantile-based cumulative entropies," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(2), pages 805-814, January.
    9. Khammar, A.H. & Jahanshahi, S.M.A., 2018. "Quantile based Tsallis entropy in residual lifetime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 994-1006.
    10. Sunoj, S.M. & Krishnan, Aswathy S. & Sankaran, P.G., 2018. "A quantile-based study of cumulative residual Tsallis entropy measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 410-421.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jafar Ahmadi, 2021. "Characterization of continuous symmetric distributions using information measures of records," Statistical Papers, Springer, vol. 62(6), pages 2603-2626, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Vikas & Rekha,, 2018. "A quantile approach of Tsallis entropy for order statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 916-928.
    2. Kayal, Suchandan, 2018. "Quantile-based cumulative inaccuracy measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 329-344.
    3. Jafar Ahmadi, 2021. "Characterization of continuous symmetric distributions using information measures of records," Statistical Papers, Springer, vol. 62(6), pages 2603-2626, December.
    4. Nanda, Asok K. & Sankaran, P.G. & Sunoj, S.M., 2014. "Rényi’s residual entropy: A quantile approach," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 114-121.
    5. Klein, Ingo, 2017. "(Generalized) maximum cumulative direct, paired, and residual Φ entropy principle," FAU Discussion Papers in Economics 25/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    6. Mohamed Said Mohamed, 2020. "On Cumulative Tsallis Entropy and Its Dynamic Past Version," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(4), pages 1903-1917, December.
    7. Ahmadi, J. & Fashandi, M., 2019. "Characterization of symmetric distributions based on some information measures properties of order statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 141-152.
    8. Sankaran, P.G. & Sunoj, S.M. & Nair, N. Unnikrishnan, 2016. "Kullback–Leibler divergence: A quantile approach," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 72-79.
    9. Balakrishnan, Narayanaswamy & Buono, Francesco & Longobardi, Maria, 2022. "A unified formulation of entropy and its application," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    10. Sunoj, S.M. & Krishnan, Aswathy S. & Sankaran, P.G., 2018. "A quantile-based study of cumulative residual Tsallis entropy measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 410-421.
    11. Răzvan-Cornel Sfetcu & Vasile Preda, 2024. "Order Properties Concerning Tsallis Residual Entropy," Mathematics, MDPI, vol. 12(3), pages 1-16, January.
    12. Lubashevsky, Ihor & Friedrich, Rudolf & Heuer, Andreas & Ushakov, Andrey, 2009. "Generalized superstatistics of nonequilibrium Markovian systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(21), pages 4535-4550.
    13. Zhang, Yongping & Shang, Pengjian & Xiong, Hui, 2019. "Multivariate generalized information entropy of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1212-1223.
    14. Antonio Di Crescenzo & Patrizia Di Gironimo, 2018. "Stochastic Comparisons and Dynamic Information of Random Lifetimes in a Replacement Model," Mathematics, MDPI, vol. 6(10), pages 1-13, October.
    15. Asok K. Nanda & Shovan Chowdhury, 2021. "Shannon's Entropy and Its Generalisations Towards Statistical Inference in Last Seven Decades," International Statistical Review, International Statistical Institute, vol. 89(1), pages 167-185, April.
    16. Han, Jung Hun, 2013. "Gamma function to Beck–Cohen superstatistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4288-4298.
    17. Narayanaswamy Balakrishnan & Francesco Buono & Maria Longobardi, 2022. "On Cumulative Entropies in Terms of Moments of Order Statistics," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 345-359, March.
    18. Mathai, A.M. & Haubold, H.J., 2008. "Pathway parameter and thermonuclear functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2462-2470.
    19. Xiaozhuan Gao & Yong Deng, 2019. "The generalization negation of probability distribution and its application in target recognition based on sensor fusion," International Journal of Distributed Sensor Networks, , vol. 15(5), pages 15501477198, May.
    20. Zhang, Fode & Ng, Hon Keung Tony & Shi, Yimin, 2018. "On alternative q-Weibull and q-extreme value distributions: Properties and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1171-1190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:82:y:2019:i:1:d:10.1007_s00184-018-0678-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.