IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v81y2018i3d10.1007_s00184-017-0641-0.html
   My bibliography  Save this article

Inference for the two-parameter bathtub-shaped distribution based on record data

Author

Listed:
  • Mohammad Z. Raqab

    (The University of Jordan
    King Abdulaziz University)

  • Omar M. Bdair

    (Al-Balqa Applied University)

  • Fahad M. Al-Aboud

    (King Abdulaziz University)

Abstract

Here we consider the record data from the two-parameter of bathtub-shaped distribution. First, we develop simplified forms for the single moments, variances and covariance of records. These distributional properties are quite useful in obtaining the best linear unbiased estimators of the location and scale parameters which can be included in the model. The estimation of the unknown shape parameters and prediction of the future unobserved records based on some observed ones are discussed. Frequentist and Bayesian analyses are adopted for conducting the estimation and prediction problems. The likelihood method, moment based method, bootstrap methods as well as the Bayesian sampling techniques are applied for the inference problems. The point predictors and credible intervals of future record values based on an informative set of records can be developed. Monte Carlo simulations are performed to compare the so developed methods and one real data set is analyzed for illustrative purposes.

Suggested Citation

  • Mohammad Z. Raqab & Omar M. Bdair & Fahad M. Al-Aboud, 2018. "Inference for the two-parameter bathtub-shaped distribution based on record data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(3), pages 229-253, April.
  • Handle: RePEc:spr:metrik:v:81:y:2018:i:3:d:10.1007_s00184-017-0641-0
    DOI: 10.1007/s00184-017-0641-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-017-0641-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-017-0641-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shuo-Jye Wu, 2008. "Estimation of the two-parameter bathtub-shaped lifetime distribution with progressive censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1139-1150.
    2. Manoj Kumar Rastogi & Yogesh Mani Tripathi & Shuo-Jye Wu, 2012. "Estimating the parameters of a bathtub-shaped distribution under progressive type-II censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2389-2411, July.
    3. Chen, Zhenmin, 2000. "A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function," Statistics & Probability Letters, Elsevier, vol. 49(2), pages 155-161, August.
    4. Essam A. Ahmed, 2014. "Bayesian estimation based on progressive Type-II censoring from two-parameter bathtub-shaped lifetime model: an Markov chain Monte Carlo approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 752-768, April.
    5. Shirin Shoaee & Esmaile Khorram, 2015. "Stress-Strength Reliability of a Two-Parameter Bathtub-shaped Lifetime Distribution Based on Progressively Censored Samples," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(24), pages 5306-5328, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zihui Zhang & Wenhao Gui, 2022. "Statistical Analysis of the Lifetime Distribution with Bathtub-Shaped Hazard Function under Lagged-Effect Step-Stress Model," Mathematics, MDPI, vol. 10(5), pages 1-23, February.
    2. Abu Awwad Raed R. & Bdair Omar M. & Abufoudeh Ghassan K., 2021. "Bayesian estimation and prediction based on Rayleigh record data with applications," Statistics in Transition New Series, Polish Statistical Association, vol. 22(3), pages 59-79, September.
    3. Ayush Tripathi & Umesh Singh & Sanjay Kumar Singh, 2021. "Inferences for the DUS-Exponential Distribution Based on Upper Record Values," Annals of Data Science, Springer, vol. 8(2), pages 387-403, June.
    4. Siyi Chen & Wenhao Gui, 2020. "Statistical Analysis of a Lifetime Distribution with a Bathtub-Shaped Failure Rate Function under Adaptive Progressive Type-II Censoring," Mathematics, MDPI, vol. 8(5), pages 1-21, April.
    5. Raed R. Abu Awwad & Omar M. Bdair & Ghassan K. Abufoudeh, 2021. "Bayesian estimation and prediction based on Rayleigh record data with applications," Statistics in Transition New Series, Polish Statistical Association, vol. 22(3), pages 59-79, September.
    6. A. Asgharzadeh & S. F. Bagheri & N. A. Ibrahim & M. R. Abubakar, 2020. "Optimal confidence regions for the two-parameter exponential distribution based on records," Computational Statistics, Springer, vol. 35(1), pages 309-326, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siyi Chen & Wenhao Gui, 2020. "Statistical Analysis of a Lifetime Distribution with a Bathtub-Shaped Failure Rate Function under Adaptive Progressive Type-II Censoring," Mathematics, MDPI, vol. 8(5), pages 1-21, April.
    2. Pramendra Singh Pundir & Puneet Kumar Gupta, 2018. "Reliability Estimation in Load-Sharing System Model with Application to Real Data," Annals of Data Science, Springer, vol. 5(1), pages 69-91, March.
    3. Essam A. Ahmed, 2014. "Bayesian estimation based on progressive Type-II censoring from two-parameter bathtub-shaped lifetime model: an Markov chain Monte Carlo approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 752-768, April.
    4. Wenjie Zhang & Wenhao Gui, 2022. "Statistical Inference and Optimal Design of Accelerated Life Testing for the Chen Distribution under Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(9), pages 1-21, May.
    5. Manoj Kumar Rastogi & Yogesh Mani Tripathi & Shuo-Jye Wu, 2012. "Estimating the parameters of a bathtub-shaped distribution under progressive type-II censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2389-2411, July.
    6. Ahmed Elshahhat & Mazen Nassar, 2021. "Bayesian survival analysis for adaptive Type-II progressive hybrid censored Hjorth data," Computational Statistics, Springer, vol. 36(3), pages 1965-1990, September.
    7. Kyeongjun Lee & Youngseuk Cho, 2017. "Bayesian and maximum likelihood estimations of the inverted exponentiated half logistic distribution under progressive Type II censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 811-832, April.
    8. Zihui Zhang & Wenhao Gui, 2022. "Statistical Analysis of the Lifetime Distribution with Bathtub-Shaped Hazard Function under Lagged-Effect Step-Stress Model," Mathematics, MDPI, vol. 10(5), pages 1-23, February.
    9. Nesreen M. Al-Olaimat & Husam A. Bayoud & Mohammad Z. Raqab, 2021. "Record data from Kies distribution and related statistical inferences," Statistics in Transition New Series, Polish Statistical Association, vol. 22(4), pages 153-170, December.
    10. Manoj Chacko & Rakhi Mohan, 2019. "Bayesian analysis of Weibull distribution based on progressive type-II censored competing risks data with binomial removals," Computational Statistics, Springer, vol. 34(1), pages 233-252, March.
    11. Al-Olaimat Nesreen M. & Bayoud Husam A. & Raqab Mohammad Z., 2021. "Record data from Kies distribution and related statistical inferences," Statistics in Transition New Series, Polish Statistical Association, vol. 22(4), pages 153-170, December.
    12. Gauss M. Cordeiro & Giovana O. Silva & Edwin M. M. Ortega, 2016. "An extended-G geometric family," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.
    13. José Daniel López-Barrientos & Ekaterina Viktorovna Gromova & Ekaterina Sergeevna Miroshnichenko, 2020. "Resource Exploitation in a Stochastic Horizon under Two Parametric Interpretations," Mathematics, MDPI, vol. 8(7), pages 1-29, July.
    14. Varun Agiwal, 2023. "Bayesian Estimation of Stress Strength Reliability from Inverse Chen Distribution with Application on Failure Time Data," Annals of Data Science, Springer, vol. 10(2), pages 317-347, April.
    15. Fiaz Ahmad Bhatti & G. G. Hamedani & Seyed Morteza Najibi & Munir Ahmad, 2021. "On the Extended Chen Distribution: Development, Properties, Characterizations and Applications," Annals of Data Science, Springer, vol. 8(1), pages 159-180, March.
    16. Barriga, Gladys D.C. & Louzada-Neto, Franscisco & Cancho, Vicente G., 2011. "The complementary exponential power lifetime model," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1250-1259, March.
    17. Gupta, Ashutosh & Mukherjee, Bhaswati & Upadhyay, S.K., 2008. "Weibull extension model: A Bayes study using Markov chain Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1434-1443.
    18. Silva, Rodrigo B. & Bourguignon, Marcelo & Dias, Cícero R.B. & Cordeiro, Gauss M., 2013. "The compound class of extended Weibull power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 352-367.
    19. Mahmoud M. Mansour & Mohammed A. Farsi & Salah M. Mohamed & Enayat M. Abd Elrazik, 2021. "Modeling the COVID-19 Pandemic Dynamics in Egypt and Saudi Arabia," Mathematics, MDPI, vol. 9(8), pages 1-13, April.
    20. Ajit Chaturvedi & Ananya Malhotra, 2017. "Estimation and testing procedures for the reliability functions of a family of lifetime distributions based on records," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 836-848, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:81:y:2018:i:3:d:10.1007_s00184-017-0641-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.