IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v9y2007i1d10.1007_s11009-006-9011-5.html
   My bibliography  Save this article

Limit Theorems for Sums of Heavy-tailed Variables with Random Dependent Weights

Author

Listed:
  • Stilian A. Stoev

    (University of Michigan)

  • Murad S. Taqqu

    (Boston University)

Abstract

Let $U_{j} ,\;j \in \mathbb{N}$ be independent and identically distributed random variables with heavy-tailed distributions. Consider a sequence of random weights ${\left\{ {W_{j} } \right\}}_{{j \in \mathbb{N}}}$ , independent of ${\left\{ {U_{j} } \right\}}_{{j \in \mathbb{N}}}$ and focus on the weighted sums ${\sum\nolimits_{j = 1}^{{\left[ {nt} \right]}} {W_{j} {\left( {U_{j} - \mu } \right)}} }$ , where μ involves a suitable centering. We establish sufficient conditions for these weighted sums to converge to non-trivial limit processes, as n→∞, when appropriately normalized. The convergence holds, for example, if ${\left\{ {W_{j} } \right\}}_{{j \in \mathbb{N}}}$ is strictly stationary, dependent, and W 1 has lighter tails than U 1. In particular, the weights W j s can be strongly dependent. The limit processes are scale mixtures of stable Lévy motions. We establish weak convergence in the Skorohod J 1-topology. We also consider multivariate weights and show that they converge weakly in the strong Skorohod M 1-topology. The M 1-topology, while weaker than the J 1-topology, is strong enough for the supremum and infimum functionals to be continuous.

Suggested Citation

  • Stilian A. Stoev & Murad S. Taqqu, 2007. "Limit Theorems for Sums of Heavy-tailed Variables with Random Dependent Weights," Methodology and Computing in Applied Probability, Springer, vol. 9(1), pages 55-87, March.
  • Handle: RePEc:spr:metcap:v:9:y:2007:i:1:d:10.1007_s11009-006-9011-5
    DOI: 10.1007/s11009-006-9011-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-006-9011-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-006-9011-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ward Whitt, 1980. "Some Useful Functions for Functional Limit Theorems," Mathematics of Operations Research, INFORMS, vol. 5(1), pages 67-85, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andriy Olenko & Dareen Omari, 2020. "Reduction Principle for Functionals of Vector Random Fields," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 573-598, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Furrer, Hansjorg & Michna, Zbigniew & Weron, Aleksander, 1997. "Stable Lévy motion approximation in collective risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 20(2), pages 97-114, September.
    2. Anatolii A. Puhalskii, 2003. "On Large Deviation Convergence of Invariant Measures," Journal of Theoretical Probability, Springer, vol. 16(3), pages 689-724, July.
    3. Saulius Minkevičius & Igor Katin & Joana Katina & Irina Vinogradova-Zinkevič, 2021. "On Little’s Formula in Multiphase Queues," Mathematics, MDPI, vol. 9(18), pages 1-15, September.
    4. Doruk Cetemen & Can Urgun & Leeat Yariv, 2023. "Collective Progress: Dynamics of Exit Waves," Journal of Political Economy, University of Chicago Press, vol. 131(9), pages 2402-2450.
    5. Cetemen, Doruk & Hwang, Ilwoo & Kaya, Ayça, 2020. "Uncertainty-driven cooperation," Theoretical Economics, Econometric Society, vol. 15(3), July.
    6. Stefan Ankirchner & Christophette Blanchet-Scalliet & Nabil Kazi-Tani, 2019. "The De Vylder-Goovaerts conjecture holds true within the diffusion limit," Post-Print hal-01887402, HAL.
    7. Penrose, Mathew D., 2000. "Central limit theorems for k-nearest neighbour distances," Stochastic Processes and their Applications, Elsevier, vol. 85(2), pages 295-320, February.
    8. Grégoire, Gérard & Hamrouni, Zouhir, 2002. "Change Point Estimation by Local Linear Smoothing," Journal of Multivariate Analysis, Elsevier, vol. 83(1), pages 56-83, October.
    9. Ralescu, Stefan S. & Puri, Madan L., 1996. "Weak convergence of sequences of first passage processes and applications," Stochastic Processes and their Applications, Elsevier, vol. 62(2), pages 327-345, July.
    10. Scalas, Enrico & Viles, Noèlia, 2014. "A functional limit theorem for stochastic integrals driven by a time-changed symmetric α-stable Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 385-410.
    11. Avishai Mandelbaum & Petar Momčilović, 2008. "Queues with Many Servers: The Virtual Waiting-Time Process in the QED Regime," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 561-586, August.
    12. Gromoll, H. Christian & Terwilliger, Bryce & Zwart, Bert, 2020. "Heavy traffic limit for the workload plateau process in a tandem queue with identical service times," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1435-1460.
    13. Tyran-Kaminska, Marta, 2010. "Convergence to Lévy stable processes under some weak dependence conditions," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1629-1650, August.
    14. Gianmarco Bet & Remco van der Hofstad & Johan S. H. van Leeuwaarden, 2019. "Heavy-Traffic Analysis Through Uniform Acceleration of Queues with Diminishing Populations," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 821-864, August.
    15. G. Bet, 2020. "An alternative approach to heavy-traffic limits for finite-pool queues," Queueing Systems: Theory and Applications, Springer, vol. 95(1), pages 121-144, June.
    16. Dijk, N.M. van, 1991. "On uniformization for nonhomogeneous Markov chains," Serie Research Memoranda 0006, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    17. Ansgar Steland, 2016. "Asymptotics for random functions moderated by dependent noise," Statistical Inference for Stochastic Processes, Springer, vol. 19(3), pages 363-387, October.
    18. Choudhary Pankaj K, 2010. "A Unified Approach for Nonparametric Evaluation of Agreement in Method Comparison Studies," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-26, June.
    19. Erhun Özkan & Amy R. Ward, 2019. "On the Control of Fork-Join Networks," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 532-564, May.
    20. Junfei Huang & Hanqin Zhang & Jiheng Zhang, 2016. "A Unified Approach to Diffusion Analysis of Queues with General Patience-Time Distributions," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1135-1160, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:9:y:2007:i:1:d:10.1007_s11009-006-9011-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.