IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v24y2022i2d10.1007_s11009-021-09915-0.html
   My bibliography  Save this article

Some Expressions of a Generalized Version of the Expected Time in the Red and the Expected Area in Red

Author

Listed:
  • Julien Callant

    (Université Libre de Bruxelles (ULB))

  • Julien Trufin

    (Université Libre de Bruxelles (ULB))

  • Pierre Zuyderhoff

    (Université Libre de Bruxelles (ULB))

Abstract

In this paper, we study a generalized version of the expected time in the red and the expected area in red introduced in Loisel (2005). We derive some expressions for this risk measure both in light tailed and heavy tailed cases for general risk processes. Then, some further expressions are obtained for Lévy processes together with an upper bound in the light-tailed case and an additional result for large initial capitals in the subexponential case.

Suggested Citation

  • Julien Callant & Julien Trufin & Pierre Zuyderhoff, 2022. "Some Expressions of a Generalized Version of the Expected Time in the Red and the Expected Area in Red," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 595-611, June.
  • Handle: RePEc:spr:metcap:v:24:y:2022:i:2:d:10.1007_s11009-021-09915-0
    DOI: 10.1007/s11009-021-09915-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-021-09915-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-021-09915-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stéphane Loisel, 2005. "Differentiation of some functionals of risk processes and optimal reserve allocation," Post-Print hal-00397289, HAL.
    2. Loisel, Stéphane & Trufin, Julien, 2014. "Properties of a risk measure derived from the expected area in red," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 191-199.
    3. Stéphane Loisel, 2005. "Differentiation of functionals of risk processes and optimal reserve allocation," Post-Print hal-00397290, HAL.
    4. Stéphane Loisel, 2005. "Differentiation of some functionals of risk processes," Post-Print hal-00157739, HAL.
    5. Stéphane Loisel, 2005. "Differentiation of some functionals of multidimensional risk processes and determination of optimal reserve allocation," Post-Print hal-00397287, HAL.
    6. Macci, Claudio, 2008. "Large deviations for the time-integrated negative parts of some processes," Statistics & Probability Letters, Elsevier, vol. 78(1), pages 75-83, January.
    7. Romain Biard & Stéphane Loisel & Claudio Macci & Noel Veraverbeke, 2010. "Asymptotic behavior of the finite-time expected time-integrated negative part of some risk processes and optimal reserve allocation," Post-Print hal-00372525, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lkabous, Mohamed Amine & Wang, Zijia, 2023. "On the area in the red of Lévy risk processes and related quantities," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 257-278.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Amine Lkabous & Jean-François Renaud, 2018. "A VaR-Type Risk Measure Derived from Cumulative Parisian Ruin for the Classical Risk Model," Risks, MDPI, vol. 6(3), pages 1-11, August.
    2. Cénac P. & Maume-Deschamps V. & Prieur C., 2012. "Some multivariate risk indicators: Minimization by using a Kiefer–Wolfowitz approach to the mirror stochastic algorithm," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 47-72, March.
    3. Cossette, Hélène & Marceau, Etienne & Trufin, Julien & Zuyderhoff, Pierre, 2020. "Ruin-based risk measures in discrete-time risk models," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 246-261.
    4. Lkabous, Mohamed Amine & Wang, Zijia, 2023. "On the area in the red of Lévy risk processes and related quantities," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 257-278.
    5. Florin Avram & Sooie-Hoe Loke, 2018. "On Central Branch/Reinsurance Risk Networks: Exact Results and Heuristics," Risks, MDPI, vol. 6(2), pages 1-18, April.
    6. Romain Biard & Stéphane Loisel & Claudio Macci & Noel Veraverbeke, 2010. "Asymptotic behavior of the finite-time expected time-integrated negative part of some risk processes and optimal reserve allocation," Post-Print hal-00372525, HAL.
    7. Loisel, Stéphane & Trufin, Julien, 2014. "Properties of a risk measure derived from the expected area in red," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 191-199.
    8. G. A. Delsing & M. R. H. Mandjes & P. J. C. Spreij & E. M. M. Winands, 2018. "An optimization approach to adaptive multi-dimensional capital management," Papers 1812.08435, arXiv.org.
    9. Liu, Jingchen & Woo, Jae-Kyung, 2014. "Asymptotic analysis of risk quantities conditional on ruin for multidimensional heavy-tailed random walks," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 1-9.
    10. Esther Frostig & Adva Keren–Pinhasik, 2017. "Parisian ruin in the dual model with applications to the G/M/1 queue," Queueing Systems: Theory and Applications, Springer, vol. 86(3), pages 261-275, August.
    11. Romain Biard, 2013. "Asymptotic multivariate finite-time ruin probabilities with heavy-tailed claim amounts: Impact of dependence and optimal reserve allocation," Post-Print hal-00538571, HAL.
    12. Zhu, Jinxia & Yang, Hailiang, 2009. "On differentiability of ruin functions under Markov-modulated models," Stochastic Processes and their Applications, Elsevier, vol. 119(5), pages 1673-1695, May.
    13. Peggy Cénac & Stéphane Loisel & Véronique Maume-Deschamps & Clémentine Prieur, 2014. "Risk indicators with several lines of business: comparison, asymptotic behavior and applications to optimal reserve allocation," Post-Print hal-00816894, HAL.
    14. Romain Biard & Christophette Blanchet-Scalliet & Anne Eyraud-Loisel & Stéphane Loisel, 2013. "Impact of Climate Change on Heat Wave Risk," Risks, MDPI, vol. 1(3), pages 1-16, December.
    15. Denuit, Michel & Robert, Christian Y., 2022. "Dynamic conditional mean risk sharing in the compound Poisson surplus model," LIDAM Discussion Papers ISBA 2022034, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Macci, Claudio, 2008. "Large deviations for the time-integrated negative parts of some processes," Statistics & Probability Letters, Elsevier, vol. 78(1), pages 75-83, January.
    17. Delsing, G.A. & Mandjes, M.R.H. & Spreij, P.J.C. & Winands, E.M.M., 2019. "An optimization approach to adaptive multi-dimensional capital management," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 87-97.
    18. Albrecher, Hansjörg & Constantinescu, Corina & Loisel, Stephane, 2011. "Explicit ruin formulas for models with dependence among risks," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 265-270, March.
    19. repec:hal:wpaper:hal-00870224 is not listed on IDEAS
    20. Eva Boj del Val & M. Mercè Claramunt Bielsa & Xavier Varea Soler, 2020. "Role of Private Long-Term Care Insurance in Financial Sustainability for an Aging Society," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    21. Guérin, Hélène & Renaud, Jean-François, 2017. "On the distribution of cumulative Parisian ruin," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 116-123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:2:d:10.1007_s11009-021-09915-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.