IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v92y2020i1d10.1007_s00186-020-00702-0.html
   My bibliography  Save this article

On the rectangular knapsack problem: approximation of a specific quadratic knapsack problem

Author

Listed:
  • Britta Schulze

    (University of Wuppertal)

  • Michael Stiglmayr

    (University of Wuppertal)

  • Luís Paquete

    (University of Coimbra)

  • Carlos M. Fonseca

    (University of Coimbra)

  • David Willems

    (University of Koblenz-Landau)

  • Stefan Ruzika

    (University of Kaiserslautern)

Abstract

In this article, we introduce the rectangular knapsack problem as a special case of the quadratic knapsack problem consisting in the maximization of the product of two separate knapsack profits subject to a cardinality constraint. We propose a polynomial time algorithm for this problem that provides a constant approximation ratio of 4.5. Our experimental results on a large number of artificially generated problem instances show that the average ratio is far from theoretical guarantee. In addition, we suggest refined versions of this approximation algorithm with the same time complexity and approximation ratio that lead to even better experimental results.

Suggested Citation

  • Britta Schulze & Michael Stiglmayr & Luís Paquete & Carlos M. Fonseca & David Willems & Stefan Ruzika, 2020. "On the rectangular knapsack problem: approximation of a specific quadratic knapsack problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 107-132, August.
  • Handle: RePEc:spr:mathme:v:92:y:2020:i:1:d:10.1007_s00186-020-00702-0
    DOI: 10.1007/s00186-020-00702-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-020-00702-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-020-00702-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Billionnet, Alain & Faye, Alain & Soutif, Eric, 1999. "A new upper bound for the 0-1 quadratic knapsack problem," European Journal of Operational Research, Elsevier, vol. 112(3), pages 664-672, February.
    2. Alberto Caprara & David Pisinger & Paolo Toth, 1999. "Exact Solution of the Quadratic Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 125-137, May.
    3. J. M. W. Rhys, 1970. "A Selection Problem of Shared Fixed Costs and Network Flows," Management Science, INFORMS, vol. 17(3), pages 200-207, November.
    4. W. David Pisinger & Anders Bo Rasmussen & Rune Sandvik, 2007. "Solution of Large Quadratic Knapsack Problems Through Aggressive Reduction," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 280-290, May.
    5. Xu, Zhou, 2012. "A strongly polynomial FPTAS for the symmetric quadratic knapsack problem," European Journal of Operational Research, Elsevier, vol. 218(2), pages 377-381.
    6. C. Helmberg & F. Rendl & R. Weismantel, 2000. "A Semidefinite Programming Approach to the Quadratic Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 4(2), pages 197-215, June.
    7. Ulrich Pferschy & Joachim Schauer, 2016. "Approximation of the Quadratic Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 308-318, May.
    8. Billionnet, Alain & Soutif, Eric, 2004. "An exact method based on Lagrangian decomposition for the 0-1 quadratic knapsack problem," European Journal of Operational Research, Elsevier, vol. 157(3), pages 565-575, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fritz Bökler & Markus Chimani & Mirko H. Wagner, 2022. "On the rectangular knapsack problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 149-160, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel Lopez Zenarosa & Oleg A. Prokopyev & Eduardo L. Pasiliao, 2021. "On exact solution approaches for bilevel quadratic 0–1 knapsack problem," Annals of Operations Research, Springer, vol. 298(1), pages 555-572, March.
    2. Jesus Cunha & Luidi Simonetti & Abilio Lucena, 2016. "Lagrangian heuristics for the Quadratic Knapsack Problem," Computational Optimization and Applications, Springer, vol. 63(1), pages 97-120, January.
    3. Z. Y. Wu & Y. J. Yang & F. S. Bai & M. Mammadov, 2011. "Global Optimality Conditions and Optimization Methods for Quadratic Knapsack Problems," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 241-259, November.
    4. Schauer, Joachim, 2016. "Asymptotic behavior of the quadratic knapsack problem," European Journal of Operational Research, Elsevier, vol. 255(2), pages 357-363.
    5. W. David Pisinger & Anders Bo Rasmussen & Rune Sandvik, 2007. "Solution of Large Quadratic Knapsack Problems Through Aggressive Reduction," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 280-290, May.
    6. David Bergman, 2019. "An Exact Algorithm for the Quadratic Multiknapsack Problem with an Application to Event Seating," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 477-492, July.
    7. Fritz Bökler & Markus Chimani & Mirko H. Wagner, 2022. "On the rectangular knapsack problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 149-160, August.
    8. Fabio Furini & Emiliano Traversi, 2019. "Theoretical and computational study of several linearisation techniques for binary quadratic problems," Annals of Operations Research, Springer, vol. 279(1), pages 387-411, August.
    9. Alain Billionnet & Éric Soutif, 2004. "Using a Mixed Integer Programming Tool for Solving the 0–1 Quadratic Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 188-197, May.
    10. Yuning Chen & Jin-Kao Hao, 2015. "Iterated responsive threshold search for the quadratic multiple knapsack problem," Annals of Operations Research, Springer, vol. 226(1), pages 101-131, March.
    11. Billionnet, Alain & Soutif, Eric, 2004. "An exact method based on Lagrangian decomposition for the 0-1 quadratic knapsack problem," European Journal of Operational Research, Elsevier, vol. 157(3), pages 565-575, September.
    12. Christoph Buchheim & Emiliano Traversi, 2018. "Quadratic Combinatorial Optimization Using Separable Underestimators," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 424-437, August.
    13. Daniele Pretolani, 2014. "Apportionments with minimum Gini index of disproportionality: a Quadratic Knapsack approach," Annals of Operations Research, Springer, vol. 215(1), pages 257-267, April.
    14. Hans Kellerer & Vitaly A. Strusevich, 2016. "Optimizing the half-product and related quadratic Boolean functions: approximation and scheduling applications," Annals of Operations Research, Springer, vol. 240(1), pages 39-94, May.
    15. Richard J. Forrester & Warren P. Adams & Paul T. Hadavas, 2010. "Concise RLT forms of binary programs: A computational study of the quadratic knapsack problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(1), pages 1-12, February.
    16. Ulrich Pferschy & Joachim Schauer, 2016. "Approximation of the Quadratic Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 308-318, May.
    17. Nihal Berktaş & Hande Yaman, 2021. "A Branch-and-Bound Algorithm for Team Formation on Social Networks," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1162-1176, July.
    18. Xiaojin Zheng & Xiaoling Sun & Duan Li & Yong Xia, 2010. "Duality Gap Estimation of Linear Equality Constrained Binary Quadratic Programming," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 864-880, November.
    19. X. Zheng & X. Sun & D. Li & Y. Xu, 2012. "On reduction of duality gap in quadratic knapsack problems," Journal of Global Optimization, Springer, vol. 54(2), pages 325-339, October.
    20. D. Quadri & E. Soutif & P. Tolla, 2009. "Exact solution method to solve large scale integer quadratic multidimensional knapsack problems," Journal of Combinatorial Optimization, Springer, vol. 17(2), pages 157-167, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:92:y:2020:i:1:d:10.1007_s00186-020-00702-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.