IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v68y2008i1p125-158.html
   My bibliography  Save this article

Optimal time to change premiums

Author

Listed:
  • Erhan Bayraktar
  • H. Poor

Abstract

The claim arrival process to an insurance company is modeled by a compound Poisson process whose intensity and/or jump size distribution changes at an unobservable time with a known distribution. It is in the insurance company’s interest to detect the change time as soon as possible in order to re-evaluate a new fair value for premiums to keep its profit level the same. This is equivalent to a problem in which the intensity and the jump size change at the same time but the intensity changes to a random variable with a know distribution. This problem becomes an optimal stopping problem for a Markovian sufficient statistic. Here, a special case of this problem is solved, in which the rate of the arrivals moves up to one of two possible values, and the Markovian sufficient statistic is two-dimensional. Copyright Springer-Verlag 2008

Suggested Citation

  • Erhan Bayraktar & H. Poor, 2008. "Optimal time to change premiums," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(1), pages 125-158, August.
  • Handle: RePEc:spr:mathme:v:68:y:2008:i:1:p:125-158
    DOI: 10.1007/s00186-007-0182-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-007-0182-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-007-0182-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bayraktar, Erhan & Dayanik, Savas & Karatzas, Ioannis, 2005. "The standard Poisson disorder problem revisited," Stochastic Processes and their Applications, Elsevier, vol. 115(9), pages 1437-1450, September.
    2. Savas Dayanik & Semih Onur Sezer, 2006. "Compound Poisson Disorder Problem," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 649-672, November.
    3. Erhan Bayraktar & Savas Dayanik, 2006. "Poisson Disorder Problem with Exponential Penalty for Delay," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 217-233, May.
    4. Gapeev, Pavel V., 2005. "The disorder problem for compound Poisson processes with exponential jumps," LSE Research Online Documents on Economics 3219, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Zhibin & Bayraktar, Erhan, 2014. "Optimal reinsurance and investment with unobservable claim size and intensity," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 156-166.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Buonaguidi, 2023. "Finite Horizon Sequential Detection with Exponential Penalty for the Delay," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 224-238, July.
    2. Savas Dayanik & Semih O Sezer, 2023. "Model Misspecification in Discrete Time Bayesian Online Change Detection," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-27, March.
    3. Buonaguidi, B., 2022. "The disorder problem for diffusion processes with the ϵ-linear and expected total miss criteria," Statistics & Probability Letters, Elsevier, vol. 189(C).
    4. Savas Dayanik & Semih Onur Sezer, 2006. "Compound Poisson Disorder Problem," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 649-672, November.
    5. Krawiec, Michał & Palmowski, Zbigniew & Płociniczak, Łukasz, 2018. "Quickest drift change detection in Lévy-type force of mortality model," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 432-450.
    6. Asaf Cohen & Eilon Solan, 2013. "Bandit Problems with Lévy Processes," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 92-107, February.
    7. Pavel V. Gapeev, 2016. "Bayesian Switching Multiple Disorder Problems," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1108-1124, August.
    8. Gapeev, Pavel V. & Stoev, Yavor I., 2017. "On the Laplace transforms of the first exit times in one-dimensional non-affine jump–diffusion models," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 152-162.
    9. Pavel Gapeev, 2006. "Multiple Disorder Problems for Wiener and Compound Poisson Processes With Exponential Jumps," SFB 649 Discussion Papers SFB649DP2006-074, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    10. Erhan Bayraktar & Savas Dayanik, 2006. "Poisson Disorder Problem with Exponential Penalty for Delay," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 217-233, May.
    11. Gapeev, Pavel V., 2020. "On the problems of sequential statistical inference for Wiener processes with delayed observations," LSE Research Online Documents on Economics 104072, London School of Economics and Political Science, LSE Library.
    12. Pavel V. Gapeev & Hessah Al Motairi, 2018. "Perpetual American Defaultable Options in Models with Random Dividends and Partial Information," Risks, MDPI, vol. 6(4), pages 1-15, November.
    13. Savas Dayanik, 2010. "Wiener Disorder Problem with Observations at Fixed Discrete Time Epochs," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 756-785, November.
    14. Asaf Cohen, 2015. "Parameter Estimation: The Proper Way to Use Bayesian Posterior Processes with Brownian Noise," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 361-389, February.
    15. Ali Devin Sezer & Çağrı Haksöz, 2012. "Optimal Decision Rules for Product Recalls," Mathematics of Operations Research, INFORMS, vol. 37(3), pages 399-418, August.
    16. Christensen, Sören & Irle, Albrecht, 2020. "The monotone case approach for the solution of certain multidimensional optimal stopping problems," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1972-1993.
    17. Pavel V. Gapeev, 2020. "On the problems of sequential statistical inference for Wiener processes with delayed observations," Statistical Papers, Springer, vol. 61(4), pages 1529-1544, August.
    18. S. Cawston & L. Vostrikova, 2010. "$F$-divergence minimal equivalent martingale measures and optimal portfolios for exponential Levy models with a change-point," Papers 1004.3525, arXiv.org, revised Jun 2011.
    19. Bayraktar, Erhan & Ludkovski, Michael, 2009. "Sequential tracking of a hidden Markov chain using point process observations," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1792-1822, June.
    20. Pavel V. Gapeev, 2006. "Integral Options in Models with Jumps," SFB 649 Discussion Papers SFB649DP2006-068, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:68:y:2008:i:1:p:125-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.