IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v29y2023i2d10.1007_s10985-022-09547-7.html
   My bibliography  Save this article

Phase-type models for competing risks, with emphasis on identifiability issues

Author

Listed:
  • Bo Henry Lindqvist

    (Norwegian University of Science and Technology)

Abstract

We first review some main results for phase-type distributions, including a discussion of Coxian distributions and their canonical representations. We then consider the extension of phase-type modeling to cover competing risks. This extension involves the consideration of finite state Markov chains with more than one absorbing state, letting each absorbing state correspond to a particular risk. The non-uniqueness of Markov chain representations of phase-type distributions is well known. In the paper we study corresponding issues for the competing risks case with the aim of obtaining identifiable parameterizations. Statistical inference for the Coxian competing risks model is briefly discussed and some real data are analyzed for illustration.

Suggested Citation

  • Bo Henry Lindqvist, 2023. "Phase-type models for competing risks, with emphasis on identifiability issues," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 318-341, April.
  • Handle: RePEc:spr:lifeda:v:29:y:2023:i:2:d:10.1007_s10985-022-09547-7
    DOI: 10.1007/s10985-022-09547-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-022-09547-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-022-09547-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mogens Bladt & Antonio Gonzalez & Steffen L. Lauritzen, 2003. "The estimation of phase-type related functionals using Markov chain Monte Carlo methods," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2003(4), pages 280-300.
    2. Bo Henry Lindqvist & Susanne Hodneland Kjølen, 2018. "Phase-Type Models and Their Extension to Competing Risks," Springer Series in Reliability Engineering, in: Anatoly Lisnianski & Ilia Frenkel & Alex Karagrigoriou (ed.), Recent Advances in Multi-state Systems Reliability, pages 107-120, Springer.
    3. McGrory, C.A. & Pettitt, A.N. & Faddy, M.J., 2009. "A fully Bayesian approach to inference for Coxian phase-type distributions with covariate dependent mean," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4311-4321, October.
    4. Chantal Guihenneuc-Jouyaux & Sylvia Richardson & Ira M. Longini Jr., 2000. "Modeling Markers of Disease Progression by a Hidden Markov Process: Application to Characterizing CD4 Cell Decline," Biometrics, The International Biometric Society, vol. 56(3), pages 733-741, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albrecher, Hansjörg & Bladt, Martin & Bladt, Mogens & Yslas, Jorge, 2022. "Mortality modeling and regression with matrix distributions," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 68-87.
    2. Marc Chadeau‐Hyam & Paul S. Clarke & Chantal Guihenneuc‐Jouyaux & Simon N. Cousens & Robert G. Will & Azra C. Ghani, 2010. "An application of hidden Markov models to the French variant Creutzfeldt–Jakob disease epidemic," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(5), pages 839-853, November.
    3. Ting Wang & Jiancang Zhuang & Kazushige Obara & Hiroshi Tsuruoka, 2017. "Hidden Markov modelling of sparse time series from non-volcanic tremor observations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 691-715, August.
    4. Zhou, Jie & Song, Xinyuan & Sun, Liuquan, 2020. "Continuous time hidden Markov model for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    5. R. A. Hubbard & L. Y. T. Inoue & J. R. Fann, 2008. "Modeling Nonhomogeneous Markov Processes via Time Transformation," Biometrics, The International Biometric Society, vol. 64(3), pages 843-850, September.
    6. Brenda Garcia-Maya & Nikolaos Limnios & Bo Henry Lindqvist, 2022. "Competing Risks Modeling by Extended Phase-Type Semi-Markov Distributions," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 309-319, March.
    7. Bruce Jones & Sally McClean & David Stanford, 2019. "Modelling mortality and discharge of hospitalized stroke patients using a phase-type recovery model," Health Care Management Science, Springer, vol. 22(4), pages 570-588, December.
    8. Chris Sherlock & Tatiana Xifara & Sandra Telfer & Mike Begon, 2013. "A coupled hidden Markov model for disease interactions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 609-627, August.
    9. Jiakun Jiang & Wei Yang & Erin M. Schnellinger & Stephen E. Kimmel & Wensheng Guo, 2023. "Dynamic logistic state space prediction model for clinical decision making," Biometrics, The International Biometric Society, vol. 79(1), pages 73-85, March.
    10. Spagnoli, Alessandra & Henderson, Robin & Boys, Richard J. & Houwing-Duistermaat, Jeanine J., 2011. "A hidden Markov model for informative dropout in longitudinal response data with crisis states," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 730-738, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:29:y:2023:i:2:d:10.1007_s10985-022-09547-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.