IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v29y2023i1d10.1007_s10985-022-09568-2.html
   My bibliography  Save this article

Double bias correction for high-dimensional sparse additive hazards regression with covariate measurement errors

Author

Listed:
  • Xiaobo Wang

    (Wuhan University)

  • Jiayu Huang

    (Wuhan University)

  • Guosheng Yin

    (University of Hong Kong)

  • Jian Huang

    (University of Iowa)

  • Yuanshan Wu

    (Zhongnan University of Economics and Law)

Abstract

We propose an inferential procedure for additive hazards regression with high-dimensional survival data, where the covariates are prone to measurement errors. We develop a double bias correction method by first correcting the bias arising from measurement errors in covariates through an estimating function for the regression parameter. By adopting the convex relaxation technique, a regularized estimator for the regression parameter is obtained by elaborately designing a feasible loss based on the estimating function, which is solved via linear programming. Using the Neyman orthogonality, we propose an asymptotically unbiased estimator which further corrects the bias caused by the convex relaxation and regularization. We derive the convergence rate of the proposed estimator and establish the asymptotic normality for the low-dimensional parameter estimator and the linear combination thereof, accompanied with a consistent estimator for the variance. Numerical experiments are carried out on both simulated and real datasets to demonstrate the promising performance of the proposed double bias correction method.

Suggested Citation

  • Xiaobo Wang & Jiayu Huang & Guosheng Yin & Jian Huang & Yuanshan Wu, 2023. "Double bias correction for high-dimensional sparse additive hazards regression with covariate measurement errors," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 115-141, January.
  • Handle: RePEc:spr:lifeda:v:29:y:2023:i:1:d:10.1007_s10985-022-09568-2
    DOI: 10.1007/s10985-022-09568-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-022-09568-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-022-09568-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Alexandre Belloni & Victor Chernozhukov & Abhishek Kaul, 2017. "Confidence bands for coefficients in high dimensional linear models with error-in-variables," CeMMAP working papers CWP22/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Ying Yan & Grace Y. Yi, 2016. "Analysis of error-prone survival data under additive hazards models: measurement error effects and adjustments," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 321-342, July.
    4. Wei Lin & Jinchi Lv, 2013. "High-Dimensional Sparse Additive Hazards Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 247-264, March.
    5. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    6. Meinshausen, Nicolai & Meier, Lukas & Bühlmann, Peter, 2009. "p-Values for High-Dimensional Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1671-1681.
    7. Huixia Judy Wang & Leonard A. Stefanski & Zhongyi Zhu, 2012. "Corrected-loss estimation for quantile regression with covariate measurement errors," Biometrika, Biometrika Trust, vol. 99(2), pages 405-421.
    8. Johnson, Brent A. & Lin, D.Y. & Zeng, Donglin, 2008. "Penalized Estimating Functions and Variable Selection in Semiparametric Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 672-680, June.
    9. Ethan X. Fang & Yang Ning & Han Liu, 2017. "Testing and confidence intervals for high dimensional proportional hazards models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1415-1437, November.
    10. Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
    3. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    4. Qizhao Chen & Vasilis Syrgkanis & Morgane Austern, 2022. "Debiased Machine Learning without Sample-Splitting for Stable Estimators," Papers 2206.01825, arXiv.org, revised Nov 2022.
    5. Chen Qiu & Taisuke Otsu, 2022. "Information theoretic approach to high‐dimensional multiplicative models: Stochastic discount factor and treatment effect," Quantitative Economics, Econometric Society, vol. 13(1), pages 63-94, January.
    6. Victor Chernozhukov & Whitney Newey & Rahul Singh & Vasilis Syrgkanis, 2020. "Adversarial Estimation of Riesz Representers," Papers 2101.00009, arXiv.org, revised Jan 2024.
    7. Qiu, Chen & Otsu, Taisuke, 2022. "Information theoretic approach to high dimensional multiplicative models: stochastic discount factor and treatment effect," LSE Research Online Documents on Economics 110494, London School of Economics and Political Science, LSE Library.
    8. Rahul Singh, 2021. "Debiased Kernel Methods," Papers 2102.11076, arXiv.org, revised Mar 2021.
    9. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    11. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    12. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    13. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    14. Juan Carlos Escanciano & Telmo P'erez-Izquierdo, 2023. "Automatic Locally Robust Estimation with Generated Regressors," Papers 2301.10643, arXiv.org, revised Nov 2023.
    15. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
    16. Stéphane Bonhomme & Martin Weidner, 2020. "Minimizing Sensitivity to Model Misspecification," CeMMAP working papers CWP37/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Stéphane Bonhomme & Martin Weidner, 2022. "Minimizing sensitivity to model misspecification," Quantitative Economics, Econometric Society, vol. 13(3), pages 907-954, July.
    18. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers 49/16, Institute for Fiscal Studies.
    19. Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Feb 2024.
    20. Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022. "Unconditional quantile regression with high‐dimensional data," Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:29:y:2023:i:1:d:10.1007_s10985-022-09568-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.