IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v24y2018i3d10.1007_s10985-017-9401-8.html
   My bibliography  Save this article

The competing risks Cox model with auxiliary case covariates under weaker missing-at-random cause of failure

Author

Listed:
  • Daniel Nevo

    (Harvard T.H. Chan School of Public Health)

  • Reiko Nishihara

    (Harvard T.H. Chan School of Public Health)

  • Shuji Ogino

    (Harvard T.H. Chan School of Public Health
    Dana-Farber Cancer Institute
    Brigham and Womens Hospital and Harvard Medical School)

  • Molin Wang

    (Harvard T.H. Chan School of Public Health)

Abstract

In the analysis of time-to-event data with multiple causes using a competing risks Cox model, often the cause of failure is unknown for some of the cases. The probability of a missing cause is typically assumed to be independent of the cause given the time of the event and covariates measured before the event occurred. In practice, however, the underlying missing-at-random assumption does not necessarily hold. Motivated by colorectal cancer molecular pathological epidemiology analysis, we develop a method to conduct valid analysis when additional auxiliary variables are available for cases only. We consider a weaker missing-at-random assumption, with missing pattern depending on the observed quantities, which include the auxiliary covariates. We use an informative likelihood approach that will yield consistent estimates even when the underlying model for missing cause of failure is misspecified. The superiority of our method over naive methods in finite samples is demonstrated by simulation study results. We illustrate the use of our method in an analysis of colorectal cancer data from the Nurses’ Health Study cohort, where, apparently, the traditional missing-at-random assumption fails to hold.

Suggested Citation

  • Daniel Nevo & Reiko Nishihara & Shuji Ogino & Molin Wang, 2018. "The competing risks Cox model with auxiliary case covariates under weaker missing-at-random cause of failure," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 425-442, July.
  • Handle: RePEc:spr:lifeda:v:24:y:2018:i:3:d:10.1007_s10985-017-9401-8
    DOI: 10.1007/s10985-017-9401-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-017-9401-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-017-9401-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanjib Basu & Ananda Sen & Mousumi Banerjee, 2003. "Bayesian analysis of competing risks with partially masked cause of failure," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 77-93, January.
    2. Kaifeng Lu & Anastasios A. Tsiatis, 2001. "Multiple Imputation Methods for Estimating Regression Coefficients in the Competing Risks Model with Missing Cause of Failure," Biometrics, The International Biometric Society, vol. 57(4), pages 1191-1197, December.
    3. Nilanjan Chatterjee & Samiran Sinha & W. Ryan Diver & Heather Spencer Feigelson, 2010. "Analysis of cohort studies with multivariate and partially observed disease classification data," Biometrika, Biometrika Trust, vol. 97(3), pages 683-698.
    4. Radu V. Craiu, 2004. "Inference based on the EM algorithm for the competing risks model with masked causes of failure," Biometrika, Biometrika Trust, vol. 91(3), pages 543-558, September.
    5. Guozhi Gao & Anastasios A. Tsiatis, 2005. "Semiparametric estimators for the regression coefficients in the linear transformation competing risks model with missing cause of failure," Biometrika, Biometrika Trust, vol. 92(4), pages 875-891, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giorgos Bakoyannis & Ying Zhang & Constantin T. Yiannoutsos, 2020. "Semiparametric regression and risk prediction with competing risks data under missing cause of failure," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 659-684, October.
    2. Fei Heng & Yanqing Sun & Seunggeun Hyun & Peter B. Gilbert, 2020. "Analysis of the time-varying Cox model for the cause-specific hazard functions with missing causes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 731-760, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgos Bakoyannis & Ying Zhang & Constantin T. Yiannoutsos, 2020. "Semiparametric regression and risk prediction with competing risks data under missing cause of failure," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 659-684, October.
    2. Natalia A. Gouskova & Feng-Chang Lin & Jason P. Fine, 2017. "Nonparametric analysis of competing risks data with event category missing at random," Biometrics, The International Biometric Society, vol. 73(1), pages 104-113, March.
    3. Fei Heng & Yanqing Sun & Seunggeun Hyun & Peter B. Gilbert, 2020. "Analysis of the time-varying Cox model for the cause-specific hazard functions with missing causes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 731-760, October.
    4. Sanjib Basu & Ram C. Tiwari, 2010. "Breast cancer survival, competing risks and mixture cure model: a Bayesian analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 307-329, April.
    5. Teng Fei & John Hanfelt & Limin Peng, 2023. "Evaluating the association between latent classes and competing risks outcomes with multiphenotype data," Biometrics, The International Biometric Society, vol. 79(1), pages 488-501, March.
    6. Louzada, Francisco & Roman, Mari & Cancho, Vicente G., 2011. "The complementary exponential geometric distribution: Model, properties, and a comparison with its counterpart," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2516-2524, August.
    7. Yanqing Sun & Li Qi & Fei Heng & Peter B. Gilbert, 2020. "A hybrid approach for the stratified mark‐specific proportional hazards model with missing covariates and missing marks, with application to vaccine efficacy trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 791-814, August.
    8. Yanqing Sun & Xiyuan Qian & Qiong Shou & Peter B. Gilbert, 2017. "Analysis of two-phase sampling data with semiparametric additive hazards models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 377-399, July.
    9. Basu, Sanjib & Ebrahimi, Nader, 2008. "A note on a transformation under censoring with application to partial least squares regression," Statistics & Probability Letters, Elsevier, vol. 78(10), pages 1161-1164, August.
    10. Jiahui Li & Qiqing Yu, 2016. "A consistent NPMLE of the joint distribution function with competing risks data under the dependent masking and right-censoring model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 63-99, January.
    11. Subramanian, Sundarraman, 2011. "Multiple imputations and the missing censoring indicator model," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 105-117, January.
    12. Qiu, Zhiping & Chen, Xiaoping & Zhou, Yong, 2015. "A kernel-assisted imputation estimating method for the additive hazards model with missing censoring indicator," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 89-97.
    13. Xiaolin Chen & Jianwen Cai, 2018. "Reweighted estimators for additive hazard model with censoring indicators missing at random," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 224-249, April.
    14. Margarita Moreno-Betancur & Grégoire Rey & Aurélien Latouche, 2015. "Direct likelihood inference and sensitivity analysis for competing risks regression with missing causes of failure," Biometrics, The International Biometric Society, vol. 71(2), pages 498-507, June.
    15. Subramanian, Sundarraman & Bandyopadhyay, Dipankar, 2010. "Doubly robust semiparametric estimation for the missing censoring indicator model," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 621-630, April.
    16. Qiqing Yu & G. Wong & Hao Qin & Jiaping Wang, 2012. "Random partition masking model for censored and masked competing risks data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 69-85, February.
    17. Himanshu Rai & Sanjeev K. Tomer & Anoop Chaturvedi, 2021. "Robust estimation with variational Bayes in presence of competing risks," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 207-223, August.
    18. Wang, Qihua & Liu, Wei & Liu, Chunling, 2009. "Probability density estimation for survival data with censoring indicators missing at random," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 835-850, May.
    19. Michal Juraska & Peter B. Gilbert, 2016. "Mark-specific hazard ratio model with missing multivariate marks," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 606-625, October.
    20. Subramanian, Sundarraman, 2009. "The multiple imputations based Kaplan-Meier estimator," Statistics & Probability Letters, Elsevier, vol. 79(18), pages 1906-1914, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:24:y:2018:i:3:d:10.1007_s10985-017-9401-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.