IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v26y2023i5d10.1007_s10951-022-00770-6.html
   My bibliography  Save this article

Well-behaved online load balancing against strategic jobs

Author

Listed:
  • Bo Li

    (The Hong Kong Polytechnic University)

  • Minming Li

    (City University of Hong Kong)

  • Xiaowei Wu

    (University of Macau)

Abstract

In the online load balancing problem on related machines, we have a set of jobs (with different sizes) arriving online, and the task is to assign each job to a machine immediately upon its arrival, so as to minimize the makespan, i.e., the maximum completion time. In classic mechanism design problems, we assume that the jobs are controlled by selfish agents, with the sizes being their private information. Each job (agent) aims at minimizing its own cost, which is its completion time plus the payment charged by the mechanism. Truthful mechanisms guaranteeing that every job minimizes its cost by reporting its true size have been well studied (Aspnes et al. JACM 44(3):486–504, 1997, Feldman et al. in: EC, 2017). In this paper, we study truthful online load balancing mechanisms that are well-behaved (machine with higher speed has larger workload). Good behavior is important as it guarantees fairness between machines and implies truthfulness in some cases when machines are controlled by selfish agents. Unfortunately, existing truthful online load balancing mechanisms are not well behaved. We first show that to guarantee producing a well-behaved schedule, any online algorithm (even non-truthful) has a competitive ratio at least $$\varOmega (\sqrt{m})$$ Ω ( m ) , where m is the number of machines. Then, we propose a mechanism that guarantees truthfulness of the online jobs and produces a schedule that is almost well-behaved. We show that our algorithm has a competitive ratio of $$O(\log m)$$ O ( log m ) . Moreover, for the case when the sizes of online jobs are bounded, the competitive ratio of our algorithm improves to O(1). Interestingly, we show several cases for which our mechanism is actually truthful against selfish machines.

Suggested Citation

  • Bo Li & Minming Li & Xiaowei Wu, 2023. "Well-behaved online load balancing against strategic jobs," Journal of Scheduling, Springer, vol. 26(5), pages 443-455, October.
  • Handle: RePEc:spr:jsched:v:26:y:2023:i:5:d:10.1007_s10951-022-00770-6
    DOI: 10.1007/s10951-022-00770-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-022-00770-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-022-00770-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leah Epstein & Asaf Levin & Rob van Stee, 2016. "A Unified Approach to Truthful Scheduling on Related Machines," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 332-351, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:26:y:2023:i:5:d:10.1007_s10951-022-00770-6. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.