IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v36y2023i2d10.1007_s10959-022-01185-x.html
   My bibliography  Save this article

Iterative Weak Approximation and Hard Bounds for Switching Diffusion

Author

Listed:
  • Qinjing Qiu

    (University of Sydney)

  • Reiichiro Kawai

    (University of Sydney
    The University of Tokyo)

Abstract

We establish a novel convergent iteration framework for a weak approximation of general switching diffusion. The key theoretical basis of the proposed approach is a restriction of the maximum number of switching so as to untangle and compensate a challenging system of weakly coupled partial differential equations to a collection of independent partial differential equations, for which a variety of accurate and efficient numerical methods are available. Upper and lower bounding functions for the solutions are constructed using the iterative approximate solutions. We provide a rigorous convergence analysis for the iterative approximate solutions, as well as for the upper and lower bounding functions. Numerical results are provided to examine our theoretical findings and the effectiveness of the proposed framework.

Suggested Citation

  • Qinjing Qiu & Reiichiro Kawai, 2023. "Iterative Weak Approximation and Hard Bounds for Switching Diffusion," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1003-1036, June.
  • Handle: RePEc:spr:jotpro:v:36:y:2023:i:2:d:10.1007_s10959-022-01185-x
    DOI: 10.1007/s10959-022-01185-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-022-01185-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-022-01185-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert J. Elliott & Leunglung Chan & Tak Kuen Siu, 2005. "Option pricing and Esscher transform under regime switching," Annals of Finance, Springer, vol. 1(4), pages 423-432, October.
    2. Boyle, Phelim & Draviam, Thangaraj, 2007. "Pricing exotic options under regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 267-282, March.
    3. Donald Aingworth & Sanjiv Das & Rajeev Motwani, 2006. "A simple approach for pricing equity options with Markov switching state variables," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 95-105.
    4. Lu, Yi & Li, Shuanming, 2009. "The Markovian regime-switching risk model with a threshold dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 296-303, April.
    5. Mitya Boyarchenko & Svetlana Boyarchenko, 2011. "Double Barrier Options In Regime-Switching Hyper-Exponential Jump-Diffusion Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(07), pages 1005-1043.
    6. A. Q. M. Khaliq & R. H. Liu, 2009. "New Numerical Scheme For Pricing American Option With Regime-Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 319-340.
    7. Figlewski, Stephen & Gao, Bin, 1999. "The adaptive mesh model: a new approach to efficient option pricing," Journal of Financial Economics, Elsevier, vol. 53(3), pages 313-351, September.
    8. Qiu, Qinjing & Kawai, Reiichiro, 2022. "A decoupling principle for Markov-modulated chains," Statistics & Probability Letters, Elsevier, vol. 182(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilio Russo, 2020. "A Discrete-Time Approach to Evaluate Path-Dependent Derivatives in a Regime-Switching Risk Model," Risks, MDPI, vol. 8(1), pages 1-22, January.
    2. Jang, Bong-Gyu & Tae, Hyeon-Wuk, 2018. "Option pricing under regime switching: Integration over simplexes method," Finance Research Letters, Elsevier, vol. 24(C), pages 301-312.
    3. Massimo Costabile & Arturo Leccadito & Ivar Massabó & Emilio Russo, 2014. "A reduced lattice model for option pricing under regime-switching," Review of Quantitative Finance and Accounting, Springer, vol. 42(4), pages 667-690, May.
    4. Leunglung Chan & Song-Ping Zhu, 2014. "An exact and explicit formula for pricing lookback options with regime switching," Papers 1407.4864, arXiv.org.
    5. Godin, Frédéric & Lai, Van Son & Trottier, Denis-Alexandre, 2019. "Option pricing under regime-switching models: Novel approaches removing path-dependence," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 130-142.
    6. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    7. Donatien Hainaut & Franck Moraux, 2019. "A switching self-exciting jump diffusion process for stock prices," Annals of Finance, Springer, vol. 15(2), pages 267-306, June.
    8. Tak Kuen Siu & Robert J. Elliott, 2019. "Hedging Options In A Doubly Markov-Modulated Financial Market Via Stochastic Flows," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-41, December.
    9. Shirzadi, Mohammad & Rostami, Mohammadreza & Dehghan, Mehdi & Li, Xiaolin, 2023. "American options pricing under regime-switching jump-diffusion models with meshfree finite point method," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    10. Leunglung Chan & Song-Ping Zhu, 2014. "An exact and explicit formula for pricing Asian options with regime switching," Papers 1407.5091, arXiv.org.
    11. Anindya Goswami & Kuldip Singh Patel, 2024. "Estimation of domain truncation error for a system of PDEs arising in option pricing," Papers 2401.15570, arXiv.org.
    12. Wei Wang & Linyi Qian & Wensheng Wang, 2016. "Hedging of contingent claims written on non traded assets under Markov-modulated models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(12), pages 3577-3595, June.
    13. Lu, Xiaoping & Putri, Endah R.M., 2020. "A semi-analytic valuation of American options under a two-state regime-switching economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    14. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2017. "Equity-linked annuity pricing with cliquet-style guarantees in regime-switching and stochastic volatility models with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 46-62.
    15. Sakkas, E. & Le, H., 2009. "A Markov-modulated model for stocks paying discrete dividends," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 19-24, August.
    16. Peter Hieber, 2014. "A Correction Note on: When the “Bull” Meets the “Bear”—A First Passage Time Problem for a Hidden Markov Process," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 771-776, September.
    17. Hieber, Peter, 2017. "Cliquet-style return guarantees in a regime switching Lévy model," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 138-147.
    18. Farzad Alavi Fard, 2014. "Optimal Bid-Ask Spread in Limit-Order Books under Regime Switching Framework," Review of Economics & Finance, Better Advances Press, Canada, vol. 4, pages 33-48, November.
    19. Shen, Yang & Siu, Tak Kuen, 2013. "Stochastic differential game, Esscher transform and general equilibrium under a Markovian regime-switching Lévy model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 757-768.
    20. Mengzhe Zhang & Leunglung Chan, 2022. "Saddlepoint Method for Pricing European Options under Markov-Switching Heston’s Stochastic Volatility Model," JRFM, MDPI, vol. 15(9), pages 1-9, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:36:y:2023:i:2:d:10.1007_s10959-022-01185-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.