IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v199y2023i3d10.1007_s10957-023-02320-2.html
   My bibliography  Save this article

Bregman-Golden Ratio Algorithms for Variational Inequalities

Author

Listed:
  • Matthew K. Tam

    (The University of Melbourne)

  • Daniel J. Uteda

    (The University of Melbourne)

Abstract

Variational inequalities provide a framework through which many optimisation problems can be solved, in particular, saddle-point problems. In this paper, we study modifications to the so-called Golden RAtio ALgorithm (GRAAL) for variational inequalities—a method which uses a fully explicit adaptive step-size and provides convergence results under local Lipschitz assumptions without requiring backtracking. We present and analyse two Bregman modifications to GRAAL: the first uses a fixed step size and converges under global Lipschitz assumptions, and the second uses an adaptive step-size rule. Numerical performance of the former method is demonstrated on a bimatrix game arising in network communication, and of the latter on two problems, namely, power allocation in Gaussian communication channels and N-person Cournot completion games. In all of these applications, an appropriately chosen Bregman distance simplifies the projection steps computed as part of the algorithm.

Suggested Citation

  • Matthew K. Tam & Daniel J. Uteda, 2023. "Bregman-Golden Ratio Algorithms for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 199(3), pages 993-1021, December.
  • Handle: RePEc:spr:joptap:v:199:y:2023:i:3:d:10.1007_s10957-023-02320-2
    DOI: 10.1007/s10957-023-02320-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02320-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02320-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:199:y:2023:i:3:d:10.1007_s10957-023-02320-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.