IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v197y2023i3d10.1007_s10957-023-02194-4.html
   My bibliography  Save this article

Proximal Stabilized Interior Point Methods and Low-Frequency-Update Preconditioning Techniques

Author

Listed:
  • Stefano Cipolla

    (The University of Edinburgh)

  • Jacek Gondzio

    (The University of Edinburgh)

Abstract

In this work, in the context of Linear and convex Quadratic Programming, we consider Primal Dual Regularized Interior Point Methods (PDR-IPMs) in the framework of the Proximal Point Method. The resulting Proximal Stabilized IPM (PS-IPM) is strongly supported by theoretical results concerning convergence and the rate of convergence, and can handle degenerate problems. Moreover, in the second part of this work, we analyse the interactions between the regularization parameters and the computational footprint of the linear algebra routines used to solve the Newton linear systems. In particular, when these systems are solved using an iterative Krylov method, we are able to show—using a new rearrangement of the Schur complement which exploits regularization—that general purposes preconditioners remain attractive for a series of subsequent IPM iterations. Indeed, if on the one hand a series of theoretical results underpin the fact that the approach here presented allows a better re-use of such computed preconditioners, on the other, we show experimentally that such (re)computations are needed only in a fraction of the total IPM iterations. The resulting regularized second order methods, for which low-frequency-update of the preconditioners are allowed, pave the path for an alternative class of second order methods characterized by reduced computational effort.

Suggested Citation

  • Stefano Cipolla & Jacek Gondzio, 2023. "Proximal Stabilized Interior Point Methods and Low-Frequency-Update Preconditioning Techniques," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1061-1103, June.
  • Handle: RePEc:spr:joptap:v:197:y:2023:i:3:d:10.1007_s10957-023-02194-4
    DOI: 10.1007/s10957-023-02194-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02194-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02194-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benedetta Morini & Valeria Simoncini & Mattia Tani, 2017. "A comparison of reduced and unreduced KKT systems arising from interior point methods," Computational Optimization and Applications, Springer, vol. 68(1), pages 1-27, September.
    2. R. T. Rockafellar, 1976. "Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 97-116, May.
    3. Alberto Marchi, 2022. "On a primal-dual Newton proximal method for convex quadratic programs," Computational Optimization and Applications, Springer, vol. 81(2), pages 369-395, March.
    4. Gondzio, Jacek, 2012. "Interior point methods 25 years later," European Journal of Operational Research, Elsevier, vol. 218(3), pages 587-601.
    5. Spyridon Pougkakiotis & Jacek Gondzio, 2021. "An interior point-proximal method of multipliers for convex quadratic programming," Computational Optimization and Applications, Springer, vol. 78(2), pages 307-351, March.
    6. Jacek Gondzio, 2012. "Matrix-free interior point method," Computational Optimization and Applications, Springer, vol. 51(2), pages 457-480, March.
    7. G. Al-Jeiroudi & J. Gondzio, 2009. "Convergence Analysis of the Inexact Infeasible Interior-Point Method for Linear Optimization," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 231-247, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Gondzio & F. N. C. Sobral, 2019. "Quasi-Newton approaches to interior point methods for quadratic problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 93-120, September.
    2. Yiran Cui & Keiichi Morikuni & Takashi Tsuchiya & Ken Hayami, 2019. "Implementation of interior-point methods for LP based on Krylov subspace iterative solvers with inner-iteration preconditioning," Computational Optimization and Applications, Springer, vol. 74(1), pages 143-176, September.
    3. Stefania Bellavia & Valentina De Simone & Daniela di Serafino & Benedetta Morini, 2016. "On the update of constraint preconditioners for regularized KKT systems," Computational Optimization and Applications, Springer, vol. 65(2), pages 339-360, November.
    4. Benedetta Morini & Valeria Simoncini, 2017. "Stability and Accuracy of Inexact Interior Point Methods for Convex Quadratic Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 450-477, November.
    5. Gondzio, Jacek, 2016. "Crash start of interior point methods," European Journal of Operational Research, Elsevier, vol. 255(1), pages 308-314.
    6. Alberto Marchi, 2022. "On a primal-dual Newton proximal method for convex quadratic programs," Computational Optimization and Applications, Springer, vol. 81(2), pages 369-395, March.
    7. Cecilia Orellana Castro & Manolo Rodriguez Heredia & Aurelio R. L. Oliveira, 2023. "Recycling basic columns of the splitting preconditioner in interior point methods," Computational Optimization and Applications, Springer, vol. 86(1), pages 49-78, September.
    8. Manolo Rodriguez Heredia & Aurelio Ribeiro Leite Oliveira, 2020. "A new proposal to improve the early iterations in the interior point method," Annals of Operations Research, Springer, vol. 287(1), pages 185-208, April.
    9. Spyridon Pougkakiotis & Jacek Gondzio, 2022. "An Interior Point-Proximal Method of Multipliers for Linear Positive Semi-Definite Programming," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 97-129, January.
    10. Songqiang Qiu, 2019. "Convergence of a stabilized SQP method for equality constrained optimization," Computational Optimization and Applications, Springer, vol. 73(3), pages 957-996, July.
    11. Silvia Berra & Alessandro Torraca & Federico Benvenuto & Sara Sommariva, 2024. "Combined Newton-Gradient Method for Constrained Root-Finding in Chemical Reaction Networks," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 404-427, January.
    12. Jean-Pierre Crouzeix & Abdelhak Hassouni & Eladio Ocaña, 2023. "A Short Note on the Twice Differentiability of the Marginal Function of a Convex Function," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 857-867, August.
    13. Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
    14. Luciana Casacio & Aurelio R. L. Oliveira & Christiano Lyra, 2018. "Using groups in the splitting preconditioner computation for interior point methods," 4OR, Springer, vol. 16(4), pages 401-410, December.
    15. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods," Computational Optimization and Applications, Springer, vol. 51(2), pages 649-679, March.
    16. Bittencourt, Tiberio & Ferreira, Orizon Pereira, 2015. "Local convergence analysis of Inexact Newton method with relative residual error tolerance under majorant condition in Riemannian manifolds," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 28-38.
    17. Xiaoming Yuan, 2011. "An improved proximal alternating direction method for monotone variational inequalities with separable structure," Computational Optimization and Applications, Springer, vol. 49(1), pages 17-29, May.
    18. Zhu, Daoli & Marcotte, Patrice, 1995. "Coupling the auxiliary problem principle with descent methods of pseudoconvex programming," European Journal of Operational Research, Elsevier, vol. 83(3), pages 670-685, June.
    19. Guo, Zhaomiao & Fan, Yueyue, 2017. "A Stochastic Multi-Agent Optimization Model for Energy Infrastructure Planning Under Uncertainty and Competition," Institute of Transportation Studies, Working Paper Series qt89s5s8hn, Institute of Transportation Studies, UC Davis.
    20. Oliver de Groot & Falk Mazelis & Roberto Motto & Annukka Ristiniemi, "undated". "A Toolkit for Computing Constrained Optimal Policy Projections (COPPs)," Working Papers 202112, University of Liverpool, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:197:y:2023:i:3:d:10.1007_s10957-023-02194-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.