IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v179y2018i1d10.1007_s10957-017-1196-y.html
   My bibliography  Save this article

A Unified Characterization of Multiobjective Robustness via Separation

Author

Listed:
  • Hong-Zhi Wei

    (Chongqing University)

  • Chun-Rong Chen

    (Chongqing University)

  • Sheng-Jie Li

    (Chongqing University)

Abstract

This paper focuses on a unified approach to characterizing different kinds of multiobjective robustness concepts. Based on linear and nonlinear scalarization results for several set order relations, together with the help of image space analysis, some suitable subsets of scalarization image space are introduced to make equivalent characterizations for upper set (lower set, set, certainly, respectively) less ordered robustness for uncertain multiobjective optimization problems. In particular, the nonlinear scalarization functional plays a significant role in computing various multiobjective robust solutions. Finally, the corresponding examples are included to show the effectiveness of the results derived in this paper.

Suggested Citation

  • Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2018. "A Unified Characterization of Multiobjective Robustness via Separation," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 86-102, October.
  • Handle: RePEc:spr:joptap:v:179:y:2018:i:1:d:10.1007_s10957-017-1196-y
    DOI: 10.1007/s10957-017-1196-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-017-1196-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-017-1196-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ehrgott, Matthias & Ide, Jonas & Schöbel, Anita, 2014. "Minmax robustness for multi-objective optimization problems," European Journal of Operational Research, Elsevier, vol. 239(1), pages 17-31.
    2. J. Li & G. Mastroeni, 2016. "Image Convexity of Generalized Systems with Infinite-Dimensional Image and Applications," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 91-115, April.
    3. Gabriele Eichfelder & Corinna Krüger & Anita Schöbel, 2017. "Decision uncertainty in multiobjective optimization," Journal of Global Optimization, Springer, vol. 69(2), pages 485-510, October.
    4. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part II: Special Duality Schemes," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 763-782, June.
    5. A. L. Soyster, 1973. "Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming," Operations Research, INFORMS, vol. 21(5), pages 1154-1157, October.
    6. Jonas Ide & Elisabeth Köbis, 2014. "Concepts of efficiency for uncertain multi-objective optimization problems based on set order relations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(1), pages 99-127, August.
    7. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    8. J. Li & N. J. Huang, 2010. "Image Space Analysis for Vector Variational Inequalities with Matrix Inequality Constraints and Applications," Journal of Optimization Theory and Applications, Springer, vol. 145(3), pages 459-477, June.
    9. S. J. Li & Y. D. Xu & S. K. Zhu, 2012. "Nonlinear Separation Approach to Constrained Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 842-856, September.
    10. H. Z. Luo & G. Mastroeni & H. X. Wu, 2010. "Separation Approach for Augmented Lagrangians in Constrained Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 144(2), pages 275-290, February.
    11. Jonas Ide & Anita Schöbel, 2016. "Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 235-271, January.
    12. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part I: Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 738-762, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Ling & Cao, Jinde & Xiong, Lianglin, 2019. "Generalized multiobjective robustness and relations to set-valued optimization," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 599-608.
    2. S. Khoshkhabar-amiranloo, 2021. "Scalarization of Multiobjective Robust Optimization Problems," SN Operations Research Forum, Springer, vol. 2(3), pages 1-16, September.
    3. Xiangkai Sun & Kok Lay Teo & Xian-Jun Long, 2021. "Some Characterizations of Approximate Solutions for Robust Semi-infinite Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 281-310, October.
    4. Yang-Dong Xu & Cheng-Ling Zhou & Sheng-Kun Zhu, 2021. "Image Space Analysis for Set Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 311-343, October.
    5. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2020. "Robustness Characterizations for Uncertain Optimization Problems via Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 459-479, August.
    6. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2020. "A Unified Approach Through Image Space Analysis to Robustness in Uncertain Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 466-493, February.
    7. Qamrul Hasan Ansari & Elisabeth Köbis & Pradeep Kumar Sharma, 2019. "Characterizations of Multiobjective Robustness via Oriented Distance Function and Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 817-839, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2018. "Characterizations for Optimality Conditions of General Robust Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 835-856, June.
    2. Qamrul Hasan Ansari & Elisabeth Köbis & Pradeep Kumar Sharma, 2019. "Characterizations of Multiobjective Robustness via Oriented Distance Function and Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 817-839, June.
    3. Yang-Dong Xu & Cheng-Ling Zhou & Sheng-Kun Zhu, 2021. "Image Space Analysis for Set Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 311-343, October.
    4. Shengjie Li & Yangdong Xu & Manxue You & Shengkun Zhu, 2018. "Constrained Extremum Problems and Image Space Analysis–Part I: Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 609-636, June.
    5. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2020. "A Unified Approach Through Image Space Analysis to Robustness in Uncertain Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 466-493, February.
    6. Fakhar, Majid & Mahyarinia, Mohammad Reza & Zafarani, Jafar, 2018. "On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization," European Journal of Operational Research, Elsevier, vol. 265(1), pages 39-48.
    7. Botte, Marco & Schöbel, Anita, 2019. "Dominance for multi-objective robust optimization concepts," European Journal of Operational Research, Elsevier, vol. 273(2), pages 430-440.
    8. Jiang, Ling & Cao, Jinde & Xiong, Lianglin, 2019. "Generalized multiobjective robustness and relations to set-valued optimization," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 599-608.
    9. Shengkun Zhu, 2018. "Image Space Analysis to Lagrange-Type Duality for Constrained Vector Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 743-769, June.
    10. Klamroth, Kathrin & Köbis, Elisabeth & Schöbel, Anita & Tammer, Christiane, 2017. "A unified approach to uncertain optimization," European Journal of Operational Research, Elsevier, vol. 260(2), pages 403-420.
    11. Michael Stiglmayr & José Rui Figueira & Kathrin Klamroth & Luís Paquete & Britta Schulze, 2022. "Decision space robustness for multi-objective integer linear programming," Annals of Operations Research, Springer, vol. 319(2), pages 1769-1791, December.
    12. Morteza Rahimi & Majid Soleimani-damaneh, 2018. "Robustness in Deterministic Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 137-162, October.
    13. Jonas Ide & Anita Schöbel, 2016. "Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 235-271, January.
    14. Manxue You & Shengjie Li, 2017. "Separation Functions and Optimality Conditions in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 527-544, November.
    15. Schmidt, M. & Schöbel, Anita & Thom, Lisa, 2019. "Min-ordering and max-ordering scalarization methods for multi-objective robust optimization," European Journal of Operational Research, Elsevier, vol. 275(2), pages 446-459.
    16. Bokrantz, Rasmus & Fredriksson, Albin, 2017. "Necessary and sufficient conditions for Pareto efficiency in robust multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 262(2), pages 682-692.
    17. Kang, Yan-li & Tian, Jing-Song & Chen, Chen & Zhao, Gui-Yu & Li, Yuan-fu & Wei, Yu, 2021. "Entropy based robust portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    18. Letizia Pellegrini & Shengkun Zhu, 2018. "Constrained Extremum Problems, Regularity Conditions and Image Space Analysis. Part II: The Vector Finite-Dimensional Case," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 788-810, June.
    19. Pinar, Mehmet & Stengos, Thanasis & Topaloglou, Nikolas, 2020. "On the construction of a feasible range of multidimensional poverty under benchmark weight uncertainty," European Journal of Operational Research, Elsevier, vol. 281(2), pages 415-427.
    20. Engau, Alexander & Sigler, Devon, 2020. "Pareto solutions in multicriteria optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 281(2), pages 357-368.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:179:y:2018:i:1:d:10.1007_s10957-017-1196-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.