IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v177y2018i3d10.1007_s10957-017-1080-9.html
   My bibliography  Save this article

Continuity and Convexity of a Nonlinear Scalarizing Function in Set Optimization Problems with Applications

Author

Listed:
  • Yu Han

    (Sichuan University)

  • Nan-jing Huang

    (Sichuan University)

Abstract

Hern $$\acute{\mathrm{a}}$$ a ´ ndez and Rodríguez-Marín (J Math Anal Appl 325:1–18, 2007) introduced a nonlinear scalarizing function for sets, which is a generalization of the Gerstewitz’s function. This paper aims at investigating some properties concerned with the nonlinear scalarizing function for sets. The continuity and convexity of the nonlinear scalarizing function for sets are showed under some suitable conditions. As applications, the upper semicontinuity and the lower semicontinuity of strongly approximate solution mappings to the parametric set optimization problems are also given.

Suggested Citation

  • Yu Han & Nan-jing Huang, 2018. "Continuity and Convexity of a Nonlinear Scalarizing Function in Set Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 679-695, June.
  • Handle: RePEc:spr:joptap:v:177:y:2018:i:3:d:10.1007_s10957-017-1080-9
    DOI: 10.1007/s10957-017-1080-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-017-1080-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-017-1080-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y N Wu & T C E Cheng, 2005. "Convergence Results for Weak Efficiency in Vector Optimization Problems with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 125(2), pages 453-472, May.
    2. G. Y. Chen & C. J. Goh & X. Q. Yang, 1999. "Vector network equilibrium problems and nonlinear scalarization methods," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 49(2), pages 239-253, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khushboo & C. S. Lalitha, 2023. "Characterizations of set order relations and nonlinear scalarizations via generalized oriented distance function in set optimization," Journal of Global Optimization, Springer, vol. 85(1), pages 235-249, January.
    2. Dumitru Motreanu & Van Thien Nguyen & Shengda Zeng, 2020. "Existence of Solutions for Implicit Obstacle Problems of Fractional Laplacian Type Involving Set-Valued Operators," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 391-407, November.
    3. Khushboo & C. S. Lalitha, 2019. "A unified minimal solution in set optimization," Journal of Global Optimization, Springer, vol. 74(1), pages 195-211, May.
    4. L. Huerga & B. Jiménez & V. Novo & A. Vílchez, 2021. "Six set scalarizations based on the oriented distance: continuity, convexity and application to convex set optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 413-436, April.
    5. Kuntal Som & V. Vetrivel, 2023. "Global well-posedness of set-valued optimization with application to uncertain problems," Journal of Global Optimization, Springer, vol. 85(2), pages 511-539, February.
    6. Lam Quoc Anh & Tran Quoc Duy & Dinh Vinh Hien & Daishi Kuroiwa & Narin Petrot, 2020. "Convergence of Solutions to Set Optimization Problems with the Set Less Order Relation," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 416-432, May.
    7. Yu Han & Kai Zhang & Nan-jing Huang, 2020. "The stability and extended well-posedness of the solution sets for set optimization problems via the Painlevé–Kuratowski convergence," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 175-196, February.
    8. Chuang-Liang Zhang & Nan-jing Huang, 2021. "Set Relations and Weak Minimal Solutions for Nonconvex Set Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 894-914, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen Van Hung & Vicente Novo & Vo Minh Tam, 2022. "Error bound analysis for vector equilibrium problems with partial order provided by a polyhedral cone," Journal of Global Optimization, Springer, vol. 82(1), pages 139-159, January.
    2. J. H. Qiu & Y. Hao, 2010. "Scalarization of Henig Properly Efficient Points in Locally Convex Spaces," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 71-92, October.
    3. Andrea Raith & Judith Wang & Matthias Ehrgott & Stuart Mitchell, 2014. "Solving multi-objective traffic assignment," Annals of Operations Research, Springer, vol. 222(1), pages 483-516, November.
    4. Jia-Wei Chen & Zhongping Wan & Yeol Cho, 2013. "Levitin–Polyak well-posedness by perturbations for systems of set-valued vector quasi-equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(1), pages 33-64, February.
    5. G. Y. Chen & X. Q. Yang, 2002. "Characterizations of Variable Domination Structures via Nonlinear Scalarization," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 97-110, January.
    6. Dinh The Luc & Truong Thi Thanh Phuong, 2016. "Equilibrium in Multi-criteria Transportation Networks," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 116-147, April.
    7. M. B. Lignola & J. Morgan, 2007. "On Convergence Results for Weak Efficiency in Vector Optimization Problems with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 133(1), pages 117-121, April.
    8. Thai Doan Chuong, 2022. "Approximate solutions in nonsmooth and nonconvex cone constrained vector optimization," Annals of Operations Research, Springer, vol. 311(2), pages 997-1015, April.
    9. Gang Xiao & Hong Xiao & Sanyang Liu, 2011. "Scalarization and pointwise well-posedness in vector optimization problems," Journal of Global Optimization, Springer, vol. 49(4), pages 561-574, April.
    10. T. C. E. Cheng & Y. N. Wu, 2006. "A Multiproduct, Multicriterion Supply-Demand Network Equilibrium Model," Operations Research, INFORMS, vol. 54(3), pages 544-554, June.
    11. M. Lignola & Jacqueline Morgan, 2012. "Approximate values for mathematical programs with variational inequality constraints," Computational Optimization and Applications, Springer, vol. 53(2), pages 485-503, October.
    12. Yunan Wu & Yuchen Peng & Long Peng & Ling Xu, 2012. "Super Efficiency of Multicriterion Network Equilibrium Model and Vector Variational Inequality," Journal of Optimization Theory and Applications, Springer, vol. 153(2), pages 485-496, May.
    13. S. Li & M. Li, 2009. "Levitin–Polyak well-posedness of vector equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 125-140, March.
    14. Jiuping Xu & Guomin Fang & Zezhong Wu, 2016. "Network equilibrium of production, transportation and pricing for multi-product multi-market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(3), pages 567-595, December.
    15. Li, S.J. & Teo, K.L. & Yang, X.Q., 2008. "A remark on a standard and linear vector network equilibrium problem with capacity constraints," European Journal of Operational Research, Elsevier, vol. 184(1), pages 13-23, January.
    16. S. Li & X. Yang & G. Chen, 2006. "A note on vector network equilibrium principles," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(2), pages 327-334, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:177:y:2018:i:3:d:10.1007_s10957-017-1080-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.