IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i2d10.1007_s10845-022-02056-2.html
   My bibliography  Save this article

A novel hybrid framework for single and multi-robot path planning in a complex industrial environment

Author

Listed:
  • Sunil Kumar

    (Dr B R Ambedkar NIT Jalandhar)

  • Afzal Sikander

    (Dr B R Ambedkar NIT Jalandhar)

Abstract

Optimum path planning is a fundamental necessity for the successful functioning of a mobile robot in industrial applications. This research work investigates the application of the artificial bee colony (ABC) approach, probabilistic roadmap (PRM) method, and evolutionary programming (EP) algorithm to tackle the issue of single and multi-robot path planning in partially known or unknown industrial complex environments. Conventional techniques depend on external factors such as delay of information from one bee's stage to another for selecting neighbour food points. Due to this, its efficiency is comparatively low and might result in longer runtimes. To address these challenges, a novel hybrid framework based on ABC-PRM-EP has been introduced. Firstly, a suboptimal initial feasible path is attained by a new framework (ABC-PRM) within the mobile robot sensor detection range. Then, EP performs refinement of that attained suboptimal path to provide a short and optimum path. Also, a multi-robot collaboration strategy has been introduced based on the concept of hold-up. A number of comparative studies have been conducted in three different test scenarios with different complexity to validate the proposed framework efficiency and performance. Different performance indices such as path length (m), smoothness (rad), collision safety value, success rate, processing time (s), and convergence speed have been measured to validate the effectiveness of the proposed framework. The comparative analysis obtained from these test scenarios indicates that the proposed framework outperforms conventional ABC, ABC-EP and HPSO-GWO-EA, while performing path planning.

Suggested Citation

  • Sunil Kumar & Afzal Sikander, 2024. "A novel hybrid framework for single and multi-robot path planning in a complex industrial environment," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 587-612, February.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:2:d:10.1007_s10845-022-02056-2
    DOI: 10.1007/s10845-022-02056-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-02056-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-02056-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:2:d:10.1007_s10845-022-02056-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.