IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v24y2018i3d10.1007_s10732-017-9327-z.html
   My bibliography  Save this article

Tackling the edge dynamic graph colouring problem with and without future adjacency information

Author

Listed:
  • Bradley Hardy

    (Cardiff University)

  • Rhyd Lewis

    (Cardiff University)

  • Jonathan Thompson

    (Cardiff University)

Abstract

Many real world operational research problems, such as frequency assignment and exam timetabling, can be reformulated as graph colouring problems (GCPs). Most algorithms for the GCP operate under the assumption that its constraints are fixed, allowing us to model the problem using a static graph. However, in many real-world cases this does not hold and it is more appropriate to model problems with constraints that change over time using an edge dynamic graph. Although exploring methods for colouring dynamic graphs has been identified as an area of interest with many real-world applications, to date, very little literature exists regarding such methods. In this paper we present several heuristic methods for modifying a feasible colouring at time-step t into an initial, but not necessarily feasible, colouring for a “similar” graph at time-step $$t+1$$ t + 1 . We will discuss two cases; (1) where changes occur at random, and (2) where probabilistic information about future changes is provided. Experimental results are also presented and the benefits of applying these particular modification methods are investigated.

Suggested Citation

  • Bradley Hardy & Rhyd Lewis & Jonathan Thompson, 2018. "Tackling the edge dynamic graph colouring problem with and without future adjacency information," Journal of Heuristics, Springer, vol. 24(3), pages 321-343, June.
  • Handle: RePEc:spr:joheur:v:24:y:2018:i:3:d:10.1007_s10732-017-9327-z
    DOI: 10.1007/s10732-017-9327-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-017-9327-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-017-9327-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David S. Johnson & Cecilia R. Aragon & Lyle A. McGeoch & Catherine Schevon, 1991. "Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning," Operations Research, INFORMS, vol. 39(3), pages 378-406, June.
    2. Rhyd Lewis & Fiona Carroll, 2016. "Creating seating plans: a practical application," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(11), pages 1353-1362, November.
    3. Qu, Rong & Burke, Edmund K. & McCollum, Barry, 2009. "Adaptive automated construction of hybrid heuristics for exam timetabling and graph colouring problems," European Journal of Operational Research, Elsevier, vol. 198(2), pages 392-404, October.
    4. Dupont, Audrey & Linhares, Andréa Carneiro & Artigues, Christian & Feillet, Dominique & Michelon, Philippe & Vasquez, Michel, 2009. "The dynamic frequency assignment problem," European Journal of Operational Research, Elsevier, vol. 195(1), pages 75-88, May.
    5. Philippe Galinier & Jin-Kao Hao, 1999. "Hybrid Evolutionary Algorithms for Graph Coloring," Journal of Combinatorial Optimization, Springer, vol. 3(4), pages 379-397, December.
    6. Karen Aardal & Stan Hoesel & Arie Koster & Carlo Mannino & Antonio Sassano, 2007. "Models and solution techniques for frequency assignment problems," Annals of Operations Research, Springer, vol. 153(1), pages 79-129, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Can Akkan & Ayla Gülcü & Zeki Kuş, 2022. "Bi-criteria simulated annealing for the curriculum-based course timetabling problem with robustness approximation," Journal of Scheduling, Springer, vol. 25(4), pages 477-501, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Zufferey & Olivier Labarthe & David Schindl, 2012. "Heuristics for a project management problem with incompatibility and assignment costs," Computational Optimization and Applications, Springer, vol. 51(3), pages 1231-1252, April.
    2. Xiao-Feng Xie & Jiming Liu, 2009. "Graph coloring by multiagent fusion search," Journal of Combinatorial Optimization, Springer, vol. 18(2), pages 99-123, August.
    3. M Plumettaz & D Schindl & N Zufferey, 2010. "Ant Local Search and its efficient adaptation to graph colouring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 819-826, May.
    4. Laurent Moalic & Alexandre Gondran, 2018. "Variations on memetic algorithms for graph coloring problems," Journal of Heuristics, Springer, vol. 24(1), pages 1-24, February.
    5. C A Glass & A Prügel-Bennett, 2005. "A polynomially searchable exponential neighbourhood for graph colouring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(3), pages 324-330, March.
    6. Valmir C. Barbosa & Carlos A.G. Assis & Josina O. Do Nascimento, 2004. "Two Novel Evolutionary Formulations of the Graph Coloring Problem," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 41-63, March.
    7. Enrico Malaguti & Michele Monaci & Paolo Toth, 2008. "A Metaheuristic Approach for the Vertex Coloring Problem," INFORMS Journal on Computing, INFORMS, vol. 20(2), pages 302-316, May.
    8. Hawa, Asyl L. & Lewis, Rhyd & Thompson, Jonathan M., 2022. "Exact and approximate methods for the score-constrained packing problem," European Journal of Operational Research, Elsevier, vol. 302(3), pages 847-859.
    9. Lü, Zhipeng & Hao, Jin-Kao, 2010. "A memetic algorithm for graph coloring," European Journal of Operational Research, Elsevier, vol. 203(1), pages 241-250, May.
    10. Caramia, Massimiliano & Dell'Olmo, Paolo, 2008. "Embedding a novel objective function in a two-phased local search for robust vertex coloring," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1358-1380, September.
    11. Severino F. Galán, 2017. "Simple decentralized graph coloring," Computational Optimization and Applications, Springer, vol. 66(1), pages 163-185, January.
    12. Vincenzo Cutello & Giuseppe Nicosia & Mario Pavone, 2007. "An immune algorithm with stochastic aging and kullback entropy for the chromatic number problem," Journal of Combinatorial Optimization, Springer, vol. 14(1), pages 9-33, July.
    13. Celia A. Glass & Adam Prügel-Bennett, 2003. "Genetic Algorithm for Graph Coloring: Exploration of Galinier and Hao's Algorithm," Journal of Combinatorial Optimization, Springer, vol. 7(3), pages 229-236, September.
    14. Avanthay, Cedric & Hertz, Alain & Zufferey, Nicolas, 2003. "A variable neighborhood search for graph coloring," European Journal of Operational Research, Elsevier, vol. 151(2), pages 379-388, December.
    15. Malaguti, Enrico & Toth, Paolo, 2008. "An evolutionary approach for bandwidth multicoloring problems," European Journal of Operational Research, Elsevier, vol. 189(3), pages 638-651, September.
    16. Iztok Fister & Marjan Mernik & Bogdan Filipič, 2013. "Graph 3-coloring with a hybrid self-adaptive evolutionary algorithm," Computational Optimization and Applications, Springer, vol. 54(3), pages 741-770, April.
    17. Olawale Titiloye & Alan Crispin, 2012. "Parameter Tuning Patterns for Random Graph Coloring with Quantum Annealing," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
    18. Philippe Galinier & Zied Boujbel & Michael Coutinho Fernandes, 2011. "An efficient memetic algorithm for the graph partitioning problem," Annals of Operations Research, Springer, vol. 191(1), pages 1-22, November.
    19. Natalia Castro & María A. Garrido-Vizuete & Rafael Robles & María Trinidad Villar-Liñán, 2020. "Contrast in greyscales of graphs," Journal of Combinatorial Optimization, Springer, vol. 39(3), pages 874-898, April.
    20. Alex Gliesch & Marcus Ritt, 2022. "A new heuristic for finding verifiable k-vertex-critical subgraphs," Journal of Heuristics, Springer, vol. 28(1), pages 61-91, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:24:y:2018:i:3:d:10.1007_s10732-017-9327-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.