IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v57y2013i1p75-114.html
   My bibliography  Save this article

Convergence analysis of Taylor models and McCormick-Taylor models

Author

Listed:
  • Agustín Bompadre
  • Alexander Mitsos
  • Benoît Chachuat

Abstract

This article presents an analysis of the convergence order of Taylor models and McCormick-Taylor models, namely Taylor models with McCormick relaxations as the remainder bounder, for factorable functions. Building upon the analysis of McCormick relaxations by Bompadre and Mitsos (J Glob Optim 52(1):1–28, 2012 ), convergence bounds are established for the addition, multiplication and composition operations. It is proved that the convergence orders of both qth-order Taylor models and qth-order McCormick-Taylor models are at least q + 1, under relatively mild assumptions. Moreover, it is verified through simple numerical examples that these bounds are sharp. A consequence of this analysis is that, unlike McCormick relaxations over natural interval extensions, McCormick-Taylor models do not result in increased order of convergence over Taylor models in general. As demonstrated by the numerical case studies however, McCormick-Taylor models can provide tighter bounds or even result in a higher convergence rate. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Agustín Bompadre & Alexander Mitsos & Benoît Chachuat, 2013. "Convergence analysis of Taylor models and McCormick-Taylor models," Journal of Global Optimization, Springer, vol. 57(1), pages 75-114, September.
  • Handle: RePEc:spr:jglopt:v:57:y:2013:i:1:p:75-114
    DOI: 10.1007/s10898-012-9998-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-012-9998-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-012-9998-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Scholz, 2012. "Theoretical rate of convergence for interval inclusion functions," Journal of Global Optimization, Springer, vol. 53(4), pages 749-767, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaromił Najman & Alexander Mitsos, 2019. "On tightness and anchoring of McCormick and other relaxations," Journal of Global Optimization, Springer, vol. 74(4), pages 677-703, August.
    2. Spencer D. Schaber & Joseph K. Scott & Paul I. Barton, 2019. "Convergence-order analysis for differential-inequalities-based bounds and relaxations of the solutions of ODEs," Journal of Global Optimization, Springer, vol. 73(1), pages 113-151, January.
    3. Rohit Kannan & Paul I. Barton, 2018. "Convergence-order analysis of branch-and-bound algorithms for constrained problems," Journal of Global Optimization, Springer, vol. 71(4), pages 753-813, August.
    4. Jai Rajyaguru & Mario E. Villanueva & Boris Houska & Benoît Chachuat, 2017. "Chebyshev model arithmetic for factorable functions," Journal of Global Optimization, Springer, vol. 68(2), pages 413-438, June.
    5. Rohit Kannan & Paul I. Barton, 2017. "The cluster problem in constrained global optimization," Journal of Global Optimization, Springer, vol. 69(3), pages 629-676, November.
    6. Jaromił Najman & Alexander Mitsos, 2016. "Convergence analysis of multivariate McCormick relaxations," Journal of Global Optimization, Springer, vol. 66(4), pages 597-628, December.
    7. Boris Houska & Benoît Chachuat, 2014. "Branch-and-Lift Algorithm for Deterministic Global Optimization in Nonlinear Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 208-248, July.
    8. Mario Villanueva & Boris Houska & Benoît Chachuat, 2015. "Unified framework for the propagation of continuous-time enclosures for parametric nonlinear ODEs," Journal of Global Optimization, Springer, vol. 62(3), pages 575-613, July.
    9. Jaromił Najman & Alexander Mitsos, 2019. "Tighter McCormick relaxations through subgradient propagation," Journal of Global Optimization, Springer, vol. 75(3), pages 565-593, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rohit Kannan & Paul I. Barton, 2017. "The cluster problem in constrained global optimization," Journal of Global Optimization, Springer, vol. 69(3), pages 629-676, November.
    2. Schöbel, Anita & Scholz, Daniel, 2014. "A solution algorithm for non-convex mixed integer optimization problems with only few continuous variables," European Journal of Operational Research, Elsevier, vol. 232(2), pages 266-275.
    3. Spencer D. Schaber & Joseph K. Scott & Paul I. Barton, 2019. "Convergence-order analysis for differential-inequalities-based bounds and relaxations of the solutions of ODEs," Journal of Global Optimization, Springer, vol. 73(1), pages 113-151, January.
    4. Kamil A. Khan & Harry A. J. Watson & Paul I. Barton, 2017. "Differentiable McCormick relaxations," Journal of Global Optimization, Springer, vol. 67(4), pages 687-729, April.
    5. Rohit Kannan & Paul I. Barton, 2018. "Convergence-order analysis of branch-and-bound algorithms for constrained problems," Journal of Global Optimization, Springer, vol. 71(4), pages 753-813, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:57:y:2013:i:1:p:75-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.