IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v53y2012i3p497-524.html
   My bibliography  Save this article

On solving continuous-time dynamic network flows

Author

Listed:
  • S. Hashemi
  • Ebrahim Nasrabadi

Abstract

No abstract is available for this item.

Suggested Citation

  • S. Hashemi & Ebrahim Nasrabadi, 2012. "On solving continuous-time dynamic network flows," Journal of Global Optimization, Springer, vol. 53(3), pages 497-524, July.
  • Handle: RePEc:spr:jglopt:v:53:y:2012:i:3:p:497-524
    DOI: 10.1007/s10898-011-9723-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-011-9723-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-011-9723-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. J. Anderson & P. Nash & A. B. Philpott, 1982. "A Class of Continuous Network Flow Problems," Mathematics of Operations Research, INFORMS, vol. 7(4), pages 501-514, November.
    2. Lisa Fleischer & Jay Sethuraman, 2005. "Efficient Algorithms for Separated Continuous Linear Programs: The Multicommodity Flow Problem with Holding Costs and Extensions," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 916-938, November.
    3. A. B. Philpott, 1990. "Continuous-Time Flows in Networks," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 640-661, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koch, Ronald & Nasrabadi, Ebrahim, 2014. "Flows over time in time-varying networks: Optimality conditions and strong duality," European Journal of Operational Research, Elsevier, vol. 237(2), pages 580-589.
    2. Nazanin Abbasnezhad & Javad Mehri-Takmeh & Javad Vakili, 2020. "The domination over time and its discretisation," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(1), pages 5-24.
    3. Natashia Boland & Riley Clement & Hamish Waterer, 2016. "A Bucket Indexed Formulation for Nonpreemptive Single Machine Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 14-30, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S Opasanon & E Miller-Hooks, 2009. "The Safest Escape problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1749-1758, December.
    2. Ronald Koch & Ebrahim Nasrabadi & Martin Skutella, 2011. "Continuous and discrete flows over time," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(3), pages 301-337, June.
    3. Urmila Pyakurel & Tanka Nath Dhamala, 2017. "Continuous Dynamic Contraflow Approach for Evacuation Planning," Annals of Operations Research, Springer, vol. 253(1), pages 573-598, June.
    4. Koch, Ronald & Nasrabadi, Ebrahim, 2014. "Flows over time in time-varying networks: Optimality conditions and strong duality," European Journal of Operational Research, Elsevier, vol. 237(2), pages 580-589.
    5. Hsien-Chung Wu, 2019. "Numerical Method for Solving the Robust Continuous-Time Linear Programming Problems," Mathematics, MDPI, vol. 7(5), pages 1-50, May.
    6. Hong Zheng & Yi-Chang Chiu & Pitu B. Mirchandani, 2015. "On the System Optimum Dynamic Traffic Assignment and Earliest Arrival Flow Problems," Transportation Science, INFORMS, vol. 49(1), pages 13-27, February.
    7. Manzhan Gu & Xiwen Lu & Jinwei Gu, 2017. "An asymptotically optimal algorithm for large-scale mixed job shop scheduling to minimize the makespan," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 473-495, February.
    8. Ching-Feng Wen & Yung-Yih Lur & Yan-Kuen Wu, 2010. "A recurrence method for a special class of continuous time linear programming problems," Journal of Global Optimization, Springer, vol. 47(1), pages 83-106, May.
    9. Hong Zheng & Yi-Chang Chiu, 2011. "A Network Flow Algorithm for the Cell-Based Single-Destination System Optimal Dynamic Traffic Assignment Problem," Transportation Science, INFORMS, vol. 45(1), pages 121-137, February.
    10. Natashia L. Boland & Martin W. P. Savelsbergh, 2019. "Perspectives on integer programming for time-dependent models," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 147-173, July.
    11. Mohammad Mehdi Nasrabadi & Mohammad Ali Yaghoobi & Mashaallah Mashinchi, 2010. "Solution algorithms for a class of continuous linear programs with fuzzy valued objective functions," Fuzzy Information and Engineering, Springer, vol. 2(1), pages 5-26, March.
    12. Khodakaram Salimifard & Sara Bigharaz, 2022. "The multicommodity network flow problem: state of the art classification, applications, and solution methods," Operational Research, Springer, vol. 22(1), pages 1-47, March.
    13. Hsien-Chung Wu, 2021. "Robust Solutions for Uncertain Continuous-Time Linear Programming Problems with Time-Dependent Matrices," Mathematics, MDPI, vol. 9(8), pages 1-52, April.
    14. Archis Ghate & Dushyant Sharma & Robert L. Smith, 2010. "A Shadow Simplex Method for Infinite Linear Programs," Operations Research, INFORMS, vol. 58(4-part-1), pages 865-877, August.
    15. Ching-Feng Wen & Hsien-Chung Wu, 2011. "Using the Dinkelbach-type algorithm to solve the continuous-time linear fractional programming problems," Journal of Global Optimization, Springer, vol. 49(2), pages 237-263, February.
    16. Ching-Feng Wen & Hsien-Chung Wu, 2012. "Using the parametric approach to solve the continuous-time linear fractional max–min problems," Journal of Global Optimization, Springer, vol. 54(1), pages 129-153, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:53:y:2012:i:3:p:497-524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.