IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v45y2023i5d10.1007_s10878-023-01023-8.html
   My bibliography  Save this article

Target set selection in social networks with tiered influence and activation thresholds

Author

Listed:
  • Zhecheng Qiang

    (University of Central Florida)

  • Eduardo L. Pasiliao

    (Air Force Research Laboratory)

  • Qipeng P. Zheng

    (University of Central Florida)

Abstract

Thanks to the mass adoption of internet and mobile devices, users of the social media can seamlessly and spontaneously connect with their friends, followers and followees. Consequently, social media networks have gradually become the major venue for broadcasting and relaying information, and is casting great influences on the people in many aspects of their daily lives. Thus locating those influential users in social media has become crucially important for the successes of many viral marketing, cyber security, politics, and safety-related applications. In this study, we address the problem through solving the tiered influence and activation thresholds target set selection problem, which is to find the seed nodes that can influence the most users within a limited time frame. Both the minimum influential seeds and maximum influence within budget problems are considered in this study. Besides, this study proposes several models exploiting different requirements on seed nodes selection, such as maximum activation, early activation and dynamic threshold. These time-indexed integer program models suffer from the computational difficulties due to the large numbers of binary variables to model influence actions at each time epoch. To address this challenge, this paper designs and leverages several efficient algorithms, i.e., Graph Partition, Nodes Selection, Greedy algorithm, recursive threshold back algorithm and two-stage approach in time, especially for large-scale networks. Computational results show that it is beneficial to apply either the breadth first search or depth first search greedy algorithms for the large instances. In addition, algorithms based on node selection methods perform better in the long-tailed networks.

Suggested Citation

  • Zhecheng Qiang & Eduardo L. Pasiliao & Qipeng P. Zheng, 2023. "Target set selection in social networks with tiered influence and activation thresholds," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-27, July.
  • Handle: RePEc:spr:jcomop:v:45:y:2023:i:5:d:10.1007_s10878-023-01023-8
    DOI: 10.1007/s10878-023-01023-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-023-01023-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-023-01023-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:45:y:2023:i:5:d:10.1007_s10878-023-01023-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.