IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v34y2017i3d10.1007_s10878-017-0109-1.html
   My bibliography  Save this article

Optimization techniques for multivariate least trimmed absolute deviation estimation

Author

Listed:
  • G. Zioutas

    (Aristotle University of Thessaloniki)

  • C. Chatzinakos

    (Aristotle University of Thessaloniki)

  • T. D. Nguyen

    (University of Southampton)

  • L. Pitsoulis

    (Aristotle University of Thessaloniki)

Abstract

Given a dataset an outlier can be defined as an observation that does not follow the statistical properties of the majority of the data. Computation of the location estimate is of fundamental importance in data analysis, and it is well known in statistics that classical methods, such as taking the sample average, can be greatly affected by the presence of outliers in the data. Using the median instead of the mean can partially resolve this issue but not completely. For the univariate case, a robust version of the median is the Least Trimmed Absolute Deviation (LTAD) robust estimator introduced in Tableman (Stat Probab Lett 19(5):387–398, 1994), which has desirable asymptotic properties such as robustness, consistently, high breakdown and normality. There are different generalizations of the LTAD for multivariate data, depending on the choice of norm. Chatzinakos et al. (J Comb Optim, 2015) we present such a generalization using the Euclidean norm and propose a solution technique for the resulting combinatorial optimization problem, based on a necessary condition, that results in a highly convergent local search algorithm. In this subsequent work, we use the $$L^1$$ L 1 norm to generalize the LTAD to higher dimensions, and show that the resulting mixed integer programming problem has an integral relaxation, after applying an appropriate data transformation. Moreover, we utilize the structure of the problem to show that the resulting LP’s can be solved efficiently using a subgradient optimization approach. The robust statistical properties of the proposed estimator are verified by extensive computational results.

Suggested Citation

  • G. Zioutas & C. Chatzinakos & T. D. Nguyen & L. Pitsoulis, 2017. "Optimization techniques for multivariate least trimmed absolute deviation estimation," Journal of Combinatorial Optimization, Springer, vol. 34(3), pages 781-797, October.
  • Handle: RePEc:spr:jcomop:v:34:y:2017:i:3:d:10.1007_s10878-017-0109-1
    DOI: 10.1007/s10878-017-0109-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-017-0109-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-017-0109-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ella Roelant & Stefan Aelst & Gert Willems, 2009. "The minimum weighted covariance determinant estimator," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(2), pages 177-204, September.
    2. Filzmoser, Peter & Maronna, Ricardo & Werner, Mark, 2008. "Outlier identification in high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1694-1711, January.
    3. Thomas P. Hettmansperger, 2002. "A practical affine equivariant multivariate median," Biometrika, Biometrika Trust, vol. 89(4), pages 851-860, December.
    4. Ella Roelant & Stefan Van Aelst, 2007. "An L1-type estimator of multivariate location and shape," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 381-393, February.
    5. Neykov, N.M. & Čížek, P. & Filzmoser, P. & Neytchev, P.N., 2012. "The least trimmed quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1757-1770.
    6. Oja, Hannu, 1983. "Descriptive statistics for multivariate distributions," Statistics & Probability Letters, Elsevier, vol. 1(6), pages 327-332, October.
    7. Ella Roelant & Stefan Aelst, 2007. "An L1-type estimator of multivariate location and shape," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 381-393, February.
    8. Tableman, Mara, 1994. "The asymptotics of the least trimmed absolute deviations (LTAD) estimator," Statistics & Probability Letters, Elsevier, vol. 19(5), pages 387-398, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Chatzinakos & L. Pitsoulis & G. Zioutas, 2016. "Optimization techniques for robust multivariate location and scatter estimation," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1443-1460, May.
    2. Daniel Hlubinka & Miroslav Šiman, 2015. "On generalized elliptical quantiles in the nonlinear quantile regression setup," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 249-264, June.
    3. Xin Dang & Hailin Sang & Lauren Weatherall, 2019. "Gini covariance matrix and its affine equivariant version," Statistical Papers, Springer, vol. 60(3), pages 641-666, June.
    4. Hlubinka, Daniel & Šiman, Miroslav, 2013. "On elliptical quantiles in the quantile regression setup," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 163-171.
    5. Olcay Arslan, 2010. "An alternative multivariate skew Laplace distribution: properties and estimation," Statistical Papers, Springer, vol. 51(4), pages 865-887, December.
    6. Jan Kalina & Jan Tichavský, 2022. "The minimum weighted covariance determinant estimator for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 977-999, December.
    7. Furno, Marilena, 1998. "Estimating the variance of the LAD regression coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 27(1), pages 11-26, March.
    8. Shi, Jianhong & Bai, Xiuqin & Song, Weixing, 2022. "Tweedie-type formulae for a multivariate Laplace distribution," Statistics & Probability Letters, Elsevier, vol. 183(C).
    9. Taskinen, Sara & Kankainen, Annaliisa & Oja, Hannu, 2003. "Sign test of independence between two random vectors," Statistics & Probability Letters, Elsevier, vol. 62(1), pages 9-21, March.
    10. Ella Roelant & Stefan Van Aelst, 2007. "An L1-type estimator of multivariate location and shape," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 381-393, February.
    11. Jin Wang & Weihua Zhou, 2015. "Effect of kurtosis on efficiency of some multivariate medians," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(3), pages 331-348, September.
    12. Ella Roelant & Stefan Aelst, 2007. "An L1-type estimator of multivariate location and shape," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 381-393, February.
    13. Čížek, Pavel, 2008. "General Trimmed Estimation: Robust Approach To Nonlinear And Limited Dependent Variable Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1500-1529, December.
    14. Hwang, Jinsoo & Jorn, Hongsuk & Kim, Jeankyung, 2004. "On the performance of bivariate robust location estimators under contamination," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 587-601, January.
    15. Masato Okamoto, 2009. "Decomposition of gini and multivariate gini indices," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 7(2), pages 153-177, June.
    16. Averous, Jean & Meste, Michel, 1997. "Median Balls: An Extension of the Interquantile Intervals to Multivariate Distributions," Journal of Multivariate Analysis, Elsevier, vol. 63(2), pages 222-241, November.
    17. Eisenberg, Bennett, 2015. "The multivariate Gini ratio," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 292-298.
    18. Kwiecien, Robert & Gather, Ursula, 2007. "Jensen's inequality for the Tukey median," Technical Reports 2007,07, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    19. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2014. "Depth-Based Runs Tests for bivariate Central Symmetry," Working Papers ECARES ECARES 2014-03, ULB -- Universite Libre de Bruxelles.
    20. Olive, David J. & Hawkins, Douglas M., 2003. "Robust regression with high coverage," Statistics & Probability Letters, Elsevier, vol. 63(3), pages 259-266, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:34:y:2017:i:3:d:10.1007_s10878-017-0109-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.