IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v31y2016i3d10.1007_s10878-014-9812-3.html
   My bibliography  Save this article

Implicit cover inequalities

Author

Listed:
  • Agostinho Agra

    (University of Aveiro)

  • Cristina Requejo

    (University of Aveiro)

  • Eulália Santos

    (ISLA-Higher Institute of Leiria)

Abstract

In this paper we consider combinatorial optimization problems whose feasible sets are simultaneously restricted by a binary knapsack constraint and a cardinality constraint imposing the exact number of selected variables. In particular, such sets arise when the feasible set corresponds to the bases of a matroid with a side knapsack constraint, for instance the weighted spanning tree problem and the multiple choice knapsack problem. We introduce the family of implicit cover inequalities which generalize the well-known cover inequalities for such feasible sets and discuss the lifting of the implicit cover inequalities. A computational study for the weighted spanning tree problem is reported.

Suggested Citation

  • Agostinho Agra & Cristina Requejo & Eulália Santos, 2016. "Implicit cover inequalities," Journal of Combinatorial Optimization, Springer, vol. 31(3), pages 1111-1129, April.
  • Handle: RePEc:spr:jcomop:v:31:y:2016:i:3:d:10.1007_s10878-014-9812-3
    DOI: 10.1007/s10878-014-9812-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-014-9812-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-014-9812-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eitan Zemel, 1989. "Easily Computable Facets of the Knapsack Polytope," Mathematics of Operations Research, INFORMS, vol. 14(4), pages 760-764, November.
    2. Kaparis, Konstantinos & Letchford, Adam N., 2008. "Local and global lifted cover inequalities for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 186(1), pages 91-103, April.
    3. Amado, Ligia & Barcia, Paulo, 1996. "New polynomial bounds for matroidal knapsacks," European Journal of Operational Research, Elsevier, vol. 95(1), pages 201-210, November.
    4. Zonghao Gu & George L. Nemhauser & Martin W.P. Savelsbergh, 2000. "Sequence Independent Lifting in Mixed Integer Programming," Journal of Combinatorial Optimization, Springer, vol. 4(1), pages 109-129, March.
    5. VAN ROY, Tony J. & WOLSEY, Laurence A., 1987. "Solving mixed integer programming problems using automatic reformulation," LIDAM Reprints CORE 782, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Tony J. Van Roy & Laurence A. Wolsey, 1987. "Solving Mixed Integer Programming Problems Using Automatic Reformulation," Operations Research, INFORMS, vol. 35(1), pages 45-57, February.
    7. Harlan Crowder & Ellis L. Johnson & Manfred Padberg, 1983. "Solving Large-Scale Zero-One Linear Programming Problems," Operations Research, INFORMS, vol. 31(5), pages 803-834, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristina Requejo & Eulália Santos, 2020. "Efficient lower and upper bounds for the weight-constrained minimum spanning tree problem using simple Lagrangian based algorithms," Operational Research, Springer, vol. 20(4), pages 2467-2495, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher Hojny & Tristan Gally & Oliver Habeck & Hendrik Lüthen & Frederic Matter & Marc E. Pfetsch & Andreas Schmitt, 2020. "Knapsack polytopes: a survey," Annals of Operations Research, Springer, vol. 292(1), pages 469-517, September.
    2. Pourbabai, B. & Ashayeri, J. & Van Wassenhove, L.N., 1992. "Strategic marketing, production, and distribution planning of an integrated manufacturing system," Other publications TiSEM 16c2bacb-2c2b-427e-b429-c, Tilburg University, School of Economics and Management.
    3. Aardal, K. & van Hoesel, C.P.M., 1995. "Polyhedral techniques in combinatorial optimization," Research Memorandum 014, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    4. Yongjia Song & James R. Luedtke & Simge Küçükyavuz, 2014. "Chance-Constrained Binary Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 735-747, November.
    5. Richard Laundy & Michael Perregaard & Gabriel Tavares & Horia Tipi & Alkis Vazacopoulos, 2009. "Solving Hard Mixed-Integer Programming Problems with Xpress-MP: A MIPLIB 2003 Case Study," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 304-313, May.
    6. Shanshan Wang & Jinlin Li & Sanjay Mehrotra, 2021. "Chance-Constrained Multiple Bin Packing Problem with an Application to Operating Room Planning," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1661-1677, October.
    7. Aardal, K.I. & van Hoesel, S., 1995. "Polyhedral Techniques in Combinatorial Optimization," Discussion Paper 1995-57, Tilburg University, Center for Economic Research.
    8. Aardal, K.I. & van Hoesel, S., 1995. "Polyhedral Techniques in Combinatorial Optimization," Other publications TiSEM ed028a07-eb6a-4c8d-8f21-d, Tilburg University, School of Economics and Management.
    9. Yogesh Agarwal & Yash Aneja, 2012. "Fixed-Charge Transportation Problem: Facets of the Projection Polyhedron," Operations Research, INFORMS, vol. 60(3), pages 638-654, June.
    10. Codas, Andrés & Camponogara, Eduardo, 2012. "Mixed-integer linear optimization for optimal lift-gas allocation with well-separator routing," European Journal of Operational Research, Elsevier, vol. 217(1), pages 222-231.
    11. Kaparis, Konstantinos & Letchford, Adam N., 2008. "Local and global lifted cover inequalities for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 186(1), pages 91-103, April.
    12. Bian, Zheyong & Bai, Yun & Douglas, W. Scott & Maher, Ali & Liu, Xiang, 2022. "Multi-year planning for optimal navigation channel dredging and dredged material management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    13. Gavin J. Bell & Bruce W. Lamar & Chris A. Wallace, 1999. "Capacity improvement, penalties, and the fixed charge transportation problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(4), pages 341-355, June.
    14. Lawrence C. Leung & Yer Van Hui & Yong Wang & Gang Chen, 2009. "A 0--1 LP Model for the Integration and Consolidation of Air Cargo Shipments," Operations Research, INFORMS, vol. 57(2), pages 402-412, April.
    15. W. Ogryczak & K. Zorychta, 1994. "Modular Optimizer for Mixed Integer Programming MOMIP Version 2.1," Working Papers wp94035, International Institute for Applied Systems Analysis.
    16. Thomas L. Magnanti, 2021. "Optimization: From Its Inception," Management Science, INFORMS, vol. 67(9), pages 5349-5363, September.
    17. Zonghao Gu & George L. Nemhauser & Martin W. P. Savelsbergh, 1999. "Lifted Cover Inequalities for 0-1 Integer Programs: Complexity," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 117-123, February.
    18. Cynthia Barnhart & Hong Jin & Pamela H. Vance, 2000. "Railroad Blocking: A Network Design Application," Operations Research, INFORMS, vol. 48(4), pages 603-614, August.
    19. S. Selcuk Erenguc & H. Murat Mercan, 1990. "A multifamily dynamic lot‐sizing model with coordinated replenishments," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 539-558, August.
    20. Könnyű, Nóra & Tóth, Sándor F., 2013. "A cutting plane method for solving harvest scheduling models with area restrictions," European Journal of Operational Research, Elsevier, vol. 228(1), pages 236-248.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:31:y:2016:i:3:d:10.1007_s10878-014-9812-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.