IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v15y2008i1d10.1007_s10878-007-9085-1.html
   My bibliography  Save this article

New combinatorial structures with applications to efficient group testing with inhibitors

Author

Listed:
  • Annalisa Bonis

    (Università di Salerno)

Abstract

Group testing with inhibitors (GTI) is a variant of classical group testing where in addition to positive items and negative items, there is a third class of items called inhibitors. In this model the response to a test is YES if and only if the tested group of items contains at least one positive item and no inhibitor. This model of group testing has been introduced by Farach et al. (Proceedings of compression and complexity of sequences, pp 357–367, 1997) for applications in the field of molecular biology. In this paper we investigate the GTI problem both in the case when the exact number of positive items is given, and in the case when the number of positives is not given but we are provided with an upper bound on it. For the latter case, we present a lower bound on the number of tests required to determine the positive items in a completely nonadaptive fashion. Also under the same hypothesis, we derive an improved lower bound on the number of tests required by any algorithm (using any number of stages) for the GTI problem. As far as it concerns the case when the exact number of positives is known, we give an efficient trivial two-stage algorithm. Instrumental to our results are new combinatorial structures introduced in this paper. In particular we introduce generalized versions of the well known superimposed codes (Du, D.Z., Hwang, F.K. in Pooling designs and nonadaptive group testing, 2006; Dyachkov, A.G., Rykov, V.V. in Probl. Control Inf. Theory 12:7–13, 1983; Dyachkov, A.G., et al. in J. Comb. Theory Ser. A 99:195–218, 2002; Kautz, W.H., Singleton, R.R. in IEEE Trans. Inf. Theory 10:363–377, 1964) and selectors (Clementi, A.E.F, et al. in Proceedings of symposium on discrete algorithms, pp. 709–718, 2001; De Bonis, A., et al. in SIAM J Comput. 34(5):1253–1270, 2005; Indyk, P. in Proceedings of symposium on discrete algorithms, pp. 697–704, 2002) that we believe to be of independent interest.

Suggested Citation

  • Annalisa Bonis, 2008. "New combinatorial structures with applications to efficient group testing with inhibitors," Journal of Combinatorial Optimization, Springer, vol. 15(1), pages 77-94, January.
  • Handle: RePEc:spr:jcomop:v:15:y:2008:i:1:d:10.1007_s10878-007-9085-1
    DOI: 10.1007/s10878-007-9085-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-007-9085-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-007-9085-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guang-Siang Lee, 2013. "An extension of Stein-Lovász theorem and some of its applications," Journal of Combinatorial Optimization, Springer, vol. 25(1), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:15:y:2008:i:1:d:10.1007_s10878-007-9085-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.