IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v13y2007i2d10.1007_s10878-006-9017-5.html
   My bibliography  Save this article

Clustering and combinatorial optimization in recursive supervised learning

Author

Listed:
  • Kiruthika Ramanathan

    (National University of Singapore)

  • Sheng Uei Guan

    (National University of Singapore)

Abstract

The use of combinations of weak learners to learn a dataset has been shown to be better than the use of a single strong learner. In fact, the idea is so successful that boosting, an algorithm combining several weak learners for supervised learning, has been considered to be the best off the shelf classifier. However, some problems still exist, including determining the optimal number of weak learners and the over fitting of data. In an earlier work, we developed the RPHP algorithm which solves both these problems by using a combination of global search, weak learning and pattern distribution. In this chapter, we revise the global search component by replacing it with a cluster based combinatorial optimization. Patterns are clustered according to the output space of the problem, i.e., natural clusters are formed based on patterns belonging to each class. A combinatorial optimization problem is therefore created, which is solved using evolutionary algorithms. The evolutionary algorithms identify the “easy” and the “difficult” clusters in the system. The removal of the easy patterns then gives way to the focused learning of the more complicated patterns. The problem therefore becomes recursively simpler. Over fitting is overcome by using a set of validation patterns along with a pattern distributor. An algorithm is also proposed to use the pattern distributor to determine the optimal number of recursions and hence the optimal number of weak learners for the problem. Empirical studies show generally good performance when compared to other state of the art methods.

Suggested Citation

  • Kiruthika Ramanathan & Sheng Uei Guan, 2007. "Clustering and combinatorial optimization in recursive supervised learning," Journal of Combinatorial Optimization, Springer, vol. 13(2), pages 137-152, February.
  • Handle: RePEc:spr:jcomop:v:13:y:2007:i:2:d:10.1007_s10878-006-9017-5
    DOI: 10.1007/s10878-006-9017-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-006-9017-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-006-9017-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:13:y:2007:i:2:d:10.1007_s10878-006-9017-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.