IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v27y2022i3d10.1007_s13253-022-00496-0.html
   My bibliography  Save this article

Incorporating Historical Data When Determining Sample Size Requirements for Aquatic Toxicity Experiments

Author

Listed:
  • Jing Zhang

    (Miami University)

  • Yunzhi Kong

    (Miami University)

  • A. John Bailer

    (Miami University)

  • Zheng Zhu

    (Boehringer Ingelheim)

  • Byran Smucker

    (Miami University)

Abstract

In aquatic toxicity tests, responses of interest from organisms exposed to varying concentration levels of the toxicant or other adverse treatment are recorded. These responses are modeled as functions of the concentration and the concentration associated with specified levels of estimated adverse effect are used in risk management. While aquatic toxicity analyses often focus on outcomes from a single experiment, laboratories commonly have a history of conducting such experiments using the same species, following a similar experimental protocol. So it is often reasonable to believe that the same underlying biological process generates the historical and current experiments. This connection may facilitate the design of more efficient experiments. In the present study, we propose a simulation-based Bayesian sample size determination approach using historical control outcomes as prior input and illustrate it using a C. dubia reproduction experiment with count outcomes. Simulation results show that precision of the potency estimates is improved via incorporation of historical data. For a standard EPA required test of 60 total organisms, when a single historical control study is incorporated assuming moderate relevance, the mean length (AL) of the $$95\%$$ 95 % interval of $$\mathrm{RI}_{25}$$ RI 25 (the concentration associated with $$25\%$$ 25 % inhibition relative to control) is reduced by $$17\%$$ 17 % . So more precision is possible from the historical control data or a reduction of $$40\%$$ 40 % of the 60 organism would result in the same precision for a pre-specified AL criterion. The incorporation of multiple historical controls assuming moderate relevance would reduce AL by $$37\%$$ 37 % , translating into a reduction of $$70\%$$ 70 % of the current default sample size. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Jing Zhang & Yunzhi Kong & A. John Bailer & Zheng Zhu & Byran Smucker, 2022. "Incorporating Historical Data When Determining Sample Size Requirements for Aquatic Toxicity Experiments," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 544-561, September.
  • Handle: RePEc:spr:jagbes:v:27:y:2022:i:3:d:10.1007_s13253-022-00496-0
    DOI: 10.1007/s13253-022-00496-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-022-00496-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-022-00496-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brian P. Hobbs & Bradley P. Carlin & Sumithra J. Mandrekar & Daniel J. Sargent, 2011. "Hierarchical Commensurate and Power Prior Models for Adaptive Incorporation of Historical Information in Clinical Trials," Biometrics, The International Biometric Society, vol. 67(3), pages 1047-1056, September.
    2. De Santis, Fulvio, 2006. "Sample Size Determination for Robust Bayesian Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 278-291, March.
    3. Fulvio De Santis, 2007. "Using historical data for Bayesian sample size determination," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(1), pages 95-113, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhramar Mukherjee & Jaeil Ahn & Stephen B. Gruber & Malay Ghosh & Nilanjan Chatterjee, 2010. "Case–Control Studies of Gene–Environment Interaction: Bayesian Design and Analysis," Biometrics, The International Biometric Society, vol. 66(3), pages 934-948, September.
    2. Pierpaolo Brutti & Fulvio Santis & Stefania Gubbiotti, 2014. "Bayesian-frequentist sample size determination: a game of two priors," METRON, Springer;Sapienza Università di Roma, vol. 72(2), pages 133-151, August.
    3. Danila Azzolina & Giulia Lorenzoni & Silvia Bressan & Liviana Da Dalt & Ileana Baldi & Dario Gregori, 2021. "Handling Poor Accrual in Pediatric Trials: A Simulation Study Using a Bayesian Approach," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    4. Jörg Martin & Clemens Elster, 2021. "The variation of the posterior variance and Bayesian sample size determination," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1135-1155, October.
    5. Fulvio De Santis & Maria Fasciolo & Stefania Gubbiotti, 2013. "Predictive control of posterior robustness for sample size choice in a Bernoulli model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(3), pages 319-340, August.
    6. Heinz Schmidli & Sandro Gsteiger & Satrajit Roychoudhury & Anthony O'Hagan & David Spiegelhalter & Beat Neuenschwander, 2014. "Robust meta-analytic-predictive priors in clinical trials with historical control information," Biometrics, The International Biometric Society, vol. 70(4), pages 1023-1032, December.
    7. Hui Quan & Xiaofei Chen & Xun Chen & Xiaodong Luo, 2022. "Assessments of Conditional and Unconditional Type I Error Probabilities for Bayesian Hypothesis Testing with Historical Data Borrowing," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(1), pages 139-157, April.
    8. Stavros Nikolakopoulos & Ingeborg van der Tweel & Kit C. B. Roes, 2018. "Dynamic borrowing through empirical power priors that control type I error," Biometrics, The International Biometric Society, vol. 74(3), pages 874-880, September.
    9. Jingjing Ye & Gregory Reaman, 2022. "Improving Early Futility Determination by Learning from External Data in Pediatric Cancer Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 337-351, July.
    10. Yimei Li & Ying Yuan, 2020. "PA‐CRM: A continuous reassessment method for pediatric phase I oncology trials with concurrent adult trials," Biometrics, The International Biometric Society, vol. 76(4), pages 1364-1373, December.
    11. Ming-Hui Chen & Joseph G. Ibrahim & Peter Lam & Alan Yu & Yuanye Zhang, 2011. "Bayesian Design of Noninferiority Trials for Medical Devices Using Historical Data," Biometrics, The International Biometric Society, vol. 67(3), pages 1163-1170, September.
    12. David Kaplan & Jianshen Chen & Sinan Yavuz & Weicong Lyu, 2023. "Bayesian Dynamic Borrowing of Historical Information with Applications to the Analysis of Large-Scale Assessments," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 1-30, March.
    13. Chenguang Wang & Min Lin & Gary L. Rosner & Guoxing Soon, 2023. "A Bayesian model with application for adaptive platform trials having temporal changes," Biometrics, The International Biometric Society, vol. 79(2), pages 1446-1458, June.
    14. Chenghao Chu & Bingming Yi, 2021. "Dynamic historical data borrowing using weighted average," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1259-1280, November.
    15. Fulvio De Santis, 2007. "Using historical data for Bayesian sample size determination," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(1), pages 95-113, January.
    16. Alexander Kaizer & John Kittelson, 2020. "Discussion on “Predictively Consistent Prior Effective Sample Sizes” by Beat Neuenschwander, Sebastian Weber, Heinz Schmidli, and Anthony O'Hagan," Biometrics, The International Biometric Society, vol. 76(2), pages 588-590, June.
    17. Sidi Wang & Kelley M. Kidwell & Satrajit Roychoudhury, 2023. "Dynamic enrichment of Bayesian small‐sample, sequential, multiple assignment randomized trial design using natural history data: a case study from Duchenne muscular dystrophy," Biometrics, The International Biometric Society, vol. 79(4), pages 3612-3623, December.
    18. Chen, Nan & Carlin, Bradley P. & Hobbs, Brian P., 2018. "Web-based statistical tools for the analysis and design of clinical trials that incorporate historical controls," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 50-68.
    19. Liyun Jiang & Lei Nie & Ying Yuan, 2023. "Elastic priors to dynamically borrow information from historical data in clinical trials," Biometrics, The International Biometric Society, vol. 79(1), pages 49-60, March.
    20. Danila Azzolina & Paola Berchialla & Silvia Bressan & Liviana Da Dalt & Dario Gregori & Ileana Baldi, 2022. "A Bayesian Sample Size Estimation Procedure Based on a B-Splines Semiparametric Elicitation Method," IJERPH, MDPI, vol. 19(21), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:27:y:2022:i:3:d:10.1007_s13253-022-00496-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.