IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v53y2022i1d10.1007_s13226-021-00017-8.html
   My bibliography  Save this article

Torus quotients of Schubert varieties in the Grassmannian $$G_{2, n}$$ G 2 , n

Author

Listed:
  • S. Senthamarai Kannan

    (Chennai Mathematical Institute)

  • Arpita Nayek

    (Chennai Mathematical Institute)

  • Pinakinath Saha

    (Tata Inst. of Fundamental Research)

Abstract

Let $$G=SL(n, {\mathbb {C}}),$$ G = S L ( n , C ) , and T be a maximal torus of G, where n is a positive even integer. In this article, we study the GIT quotients of the Schubert varieties in the Grassmannian $$G_{2,n}.$$ G 2 , n . We prove that the GIT quotients of the Richardson varieties in the minimal dimensional Schubert variety admitting stable points in $$G_{2,n}$$ G 2 , n are projective spaces (see Proposition 3.5 and Proposition 3.6). Further, we prove that the GIT quotients of certain Richardson varieties in $$G_{2,n}$$ G 2 , n are projective toric varieties. Also, we prove that the GIT quotients of the Schubert varieties in $$G_{2,n}$$ G 2 , n have at most finite set of singular points. Further, we have computed the exact number of singular points of the GIT quotient of $$G_{2,n}.$$ G 2 , n .

Suggested Citation

  • S. Senthamarai Kannan & Arpita Nayek & Pinakinath Saha, 2022. "Torus quotients of Schubert varieties in the Grassmannian $$G_{2, n}$$ G 2 , n," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(1), pages 273-293, March.
  • Handle: RePEc:spr:indpam:v:53:y:2022:i:1:d:10.1007_s13226-021-00017-8
    DOI: 10.1007/s13226-021-00017-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-021-00017-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-021-00017-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:53:y:2022:i:1:d:10.1007_s13226-021-00017-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.