IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v30y2021i5d10.1007_s10726-021-09748-9.html
   My bibliography  Save this article

Inverse Preference Optimization in the Graph Model for Conflict Resolution based on the Genetic Algorithm

Author

Listed:
  • Liangyan Tao

    (Nanjing University of Aeronautics and Astronautics)

  • Xuebi Su

    (Nanjing University of Aeronautics and Astronautics)

  • Saad Ahmed Javed

    (Nanjing University of Information Science and Technology)

Abstract

The Inverse GMCR (Graph Model for Conflict Resolution) produces rankings of possible states (preference relation profiles) that will make the desired resolution of a conflict stable. However, there are usually numerous preference relation profiles making it difficult for a third party to choose an appropriate preference relation to design its mediation strategy. Moreover, the cost or effort of changing preference relations over states has rarely been studied in Inverse GMCR. The current study presents two inverse preference optimization models considering the cost and effort in changing preferences to address these issues. The first model aims to ascertain an optimal preference at minimum adjustment cost such that the desired equilibrium is reached. The other model is to find an optimal required preference under minimum adjustment amount, which is defined as the difference between the required preference matrix and the original preference matrix. Then, a Genetic Algorithm (GA)-based algorithm is proposed. Finally, the two proposed preference optimization methods are applied to two cases, demonstrating the effectiveness of the proposed methodology.

Suggested Citation

  • Liangyan Tao & Xuebi Su & Saad Ahmed Javed, 2021. "Inverse Preference Optimization in the Graph Model for Conflict Resolution based on the Genetic Algorithm," Group Decision and Negotiation, Springer, vol. 30(5), pages 1085-1112, October.
  • Handle: RePEc:spr:grdene:v:30:y:2021:i:5:d:10.1007_s10726-021-09748-9
    DOI: 10.1007/s10726-021-09748-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-021-09748-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-021-09748-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shawei He & Keith Hipel & D. Kilgour, 2014. "Water Diversion Conflicts in China: A Hierarchical Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1823-1837, May.
    2. Zhao, Shinan & Xu, Haiyan & Hipel, Keith W. & Fang, Liping, 2019. "Mixed stabilities for analyzing opponents’ heterogeneous behavior within the graph model for conflict resolution," European Journal of Operational Research, Elsevier, vol. 277(2), pages 621-632.
    3. Kaveh Madani & Keith Hipel, 2011. "Non-Cooperative Stability Definitions for Strategic Analysis of Generic Water Resources Conflicts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(8), pages 1949-1977, June.
    4. He, Shawei & Marc Kilgour, D. & Hipel, Keith W., 2017. "A general hierarchical graph model for conflict resolution with application to greenhouse gas emission disputes between USA and China," European Journal of Operational Research, Elsevier, vol. 257(3), pages 919-932.
    5. Jacob Bercovitch & Scott Sigmund Gartner, 2006. "Is There Method in the Madness of Mediation? Some Lessons for Mediators from Quantitative Studies of Mediation," International Interactions, Taylor & Francis Journals, vol. 32(4), pages 329-354, December.
    6. Takehiro Inohara & Keith W. Hipel, 2008. "Coalition analysis in the graph model for conflict resolution," Systems Engineering, John Wiley & Sons, vol. 11(4), pages 343-359, December.
    7. Haiyan Xu & Keith Hipel & D. Kilgour & Ye Chen, 2010. "Combining strength and uncertainty for preferences in the graph model for conflict resolution with multiple decision makers," Theory and Decision, Springer, vol. 69(4), pages 497-521, October.
    8. Rêgo, Leandro Chaves & Silva, Hugo Victor & Rodrigues, Carlos Diego, 2021. "Optimizing the cost of preference manipulation in the graph model for conflict resolution," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    9. Keith W. Hipel & Liping Fang & D. Marc Kilgour, 2020. "The Graph Model for Conflict Resolution: Reflections on Three Decades of Development," Group Decision and Negotiation, Springer, vol. 29(1), pages 11-60, February.
    10. Wang, Junjie & Hipel, Keith W. & Fang, Liping & Dang, Yaoguo, 2018. "Matrix representations of the inverse problem in the graph model for conflict resolution," European Journal of Operational Research, Elsevier, vol. 270(1), pages 282-293.
    11. M. Abul Bashar & Keith W. Hipel & D. Marc Kilgour & Amer Obeidi, 2018. "Interval fuzzy preferences in the graph model for conflict resolution," Fuzzy Optimization and Decision Making, Springer, vol. 17(3), pages 287-315, September.
    12. Felipe Costa Araujo & Alexandre Bevilacqua Leoneti, 2020. "Evaluating the Stability of the Oil and Gas Exploration and Production Regulatory Framework in Brazil," Group Decision and Negotiation, Springer, vol. 29(1), pages 143-156, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Yuming & Ge, Bingfeng & Hipel, Keith W. & Fang, Liping & Zhao, Bin & Yang, Kewei, 2023. "Solving the inverse graph model for conflict resolution using a hybrid metaheuristic algorithm," European Journal of Operational Research, Elsevier, vol. 305(2), pages 806-819.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yuming & Ge, Bingfeng & Hipel, Keith W. & Fang, Liping & Zhao, Bin & Yang, Kewei, 2023. "Solving the inverse graph model for conflict resolution using a hybrid metaheuristic algorithm," European Journal of Operational Research, Elsevier, vol. 305(2), pages 806-819.
    2. He, Shawei, 2022. "A time sensitive graph model for conflict resolution with application to international air carbon negotiation," European Journal of Operational Research, Elsevier, vol. 302(2), pages 652-670.
    3. Wu, Nannan & Xu, Yejun & Kilgour, D. Marc & Fang, Liping, 2023. "The graph model for composite decision makers and its application to a water resource conflict," European Journal of Operational Research, Elsevier, vol. 306(1), pages 308-321.
    4. Keith W. Hipel & Liping Fang & D. Marc Kilgour, 2020. "The Graph Model for Conflict Resolution: Reflections on Three Decades of Development," Group Decision and Negotiation, Springer, vol. 29(1), pages 11-60, February.
    5. Shawei He, 2019. "Coalition Analysis in Basic Hierarchical Graph Model for Conflict Resolution with Application to Climate Change Governance Disputes," Group Decision and Negotiation, Springer, vol. 28(5), pages 879-906, October.
    6. Yu Han & Haiyan Xu & Liping Fang & Keith W. Hipel, 2022. "An Integer Programming Approach to Solving the Inverse Graph Model for Conflict Resolution with Two Decision Makers," Group Decision and Negotiation, Springer, vol. 31(1), pages 23-48, February.
    7. Ming Tang & Huchang Liao, 2022. "A graph model for conflict resolution with inconsistent preferences among large-scale participants," Fuzzy Optimization and Decision Making, Springer, vol. 21(3), pages 455-478, September.
    8. Zhao, Shinan & Xu, Haiyan & Hipel, Keith W. & Fang, Liping, 2019. "Mixed stabilities for analyzing opponents’ heterogeneous behavior within the graph model for conflict resolution," European Journal of Operational Research, Elsevier, vol. 277(2), pages 621-632.
    9. Yu Han & Haiyan Xu & Ginger Y. Ke, 2020. "Construction and application of hyper-inverse conflict models based on the sequential stability," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 237-259, November.
    10. Sean B. Walker & Keith W. Hipel, 2017. "Strategy, Complexity and Cooperation: The Sino-American Climate Regime," Group Decision and Negotiation, Springer, vol. 26(5), pages 997-1027, September.
    11. M. Nassereddine & M. A. Ellakkis & A. Azar & M. D. Nayeri, 2021. "Developing a Multi-methodology for Conflict Resolution: Case of Yemen’s Humanitarian Crisis," Group Decision and Negotiation, Springer, vol. 30(2), pages 301-320, April.
    12. Inohara, Takehiro, 2023. "Similarities, differences, and preservation of efficiencies, with application to attitude analysis, within the Graph Model for Conflict Resolution," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1330-1348.
    13. Leandro Chaves Rêgo & France E. G. Oliveira, 2020. "Higher-order Sequential Stabilities in the Graph Model for Conflict Resolution for Bilateral Conflicts," Group Decision and Negotiation, Springer, vol. 29(4), pages 601-626, August.
    14. Pournabi, Nima & Janatrostami, Somaye & Ashrafzadeh, Afshin & Mohammadi, Kourosh, 2021. "Resolution of Internal conflicts for conservation of the Hour Al-Azim wetland using AHP-SWOT and game theory approach," Land Use Policy, Elsevier, vol. 107(C).
    15. He, Shawei & Marc Kilgour, D. & Hipel, Keith W., 2017. "A general hierarchical graph model for conflict resolution with application to greenhouse gas emission disputes between USA and China," European Journal of Operational Research, Elsevier, vol. 257(3), pages 919-932.
    16. Qingye Han & Yuming Zhu & Ginger Y. Ke & Hongli Lin, 2019. "A Two-Stage Decision Framework for Resolving Brownfield Conflicts," IJERPH, MDPI, vol. 16(6), pages 1-19, March.
    17. Shinan Zhao & Haiyan Xu, 2019. "A Novel Preference Elicitation Technique Based on a Graph Model and Its Application to a Brownfield Redevelopment Conflict in China," IJERPH, MDPI, vol. 16(21), pages 1-14, October.
    18. Kaveh Madani & Laura Read & Laleh Shalikarian, 2014. "Voting Under Uncertainty: A Stochastic Framework for Analyzing Group Decision Making Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1839-1856, May.
    19. P. Giovani Palafox-Alcantar & Dexter V. L. Hunt & Chris D. F. Rogers, 2020. "A Hybrid Methodology to Study Stakeholder Cooperation in Circular Economy Waste Management of Cities," Energies, MDPI, vol. 13(7), pages 1-30, April.
    20. Dhiaulhaq, Ahmad & Gritten, David & De Bruyn, Toon & Yasmi, Yurdi & Zazali, Ahmad & Silalahi, Mangarah, 2014. "Transforming conflict in plantations through mediation: Lessons and experiences from Sumatera, Indonesia," Forest Policy and Economics, Elsevier, vol. 41(C), pages 22-30.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:30:y:2021:i:5:d:10.1007_s10726-021-09748-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.