IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v16y2017i4d10.1007_s10700-016-9258-4.html
   My bibliography  Save this article

Aggregation and consensus for preference relations based on fuzzy partial orders

Author

Listed:
  • Gleb Beliakov

    (Deakin University)

  • Simon James

    (Deakin University)

  • Tim Wilkin

    (Deakin University)

Abstract

We propose a framework for eliciting and aggregating pairwise preference relations based on the assumption of an underlying fuzzy partial order. We also propose some linear programming optimization methods for ensuring consistency either as part of the aggregation phase or as a pre- or post-processing task. We contend that this framework of pairwise-preference relations, based on the Kemeny distance, can be less sensitive to extreme or biased opinions and is also less complex to elicit from experts. We provide some examples and outline their relevant properties and associated concepts.

Suggested Citation

  • Gleb Beliakov & Simon James & Tim Wilkin, 2017. "Aggregation and consensus for preference relations based on fuzzy partial orders," Fuzzy Optimization and Decision Making, Springer, vol. 16(4), pages 409-428, December.
  • Handle: RePEc:spr:fuzodm:v:16:y:2017:i:4:d:10.1007_s10700-016-9258-4
    DOI: 10.1007/s10700-016-9258-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-016-9258-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-016-9258-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. Baets & H. Meyer & B. Schuymer, 2006. "Cyclic Evaluation of Transitivity of Reciprocal Relations," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 26(2), pages 217-238, April.
    2. José Luis Garcí a-Lapresta & Bonifacio Llamazares, 2010. "Preference Intensities and Majority Decisions Based on Difference of Support Between Alternatives," Group Decision and Negotiation, Springer, vol. 19(6), pages 527-542, November.
    3. Herrera-Viedma, E. & Herrera, F. & Chiclana, F. & Luque, M., 2004. "Some issues on consistency of fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 154(1), pages 98-109, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Zhibin & Huang, Shuai & Xu, Jiuping, 2019. "Multi-stage optimization models for individual consistency and group consensus with preference relations," European Journal of Operational Research, Elsevier, vol. 275(1), pages 182-194.
    2. Jie Tang & Fanyong Meng & Francisco Javier Cabrerizo & Enrique Herrera-Viedma, 2019. "A procedure for group decision making with interval-valued intuitionistic linguistic fuzzy preference relations," Fuzzy Optimization and Decision Making, Springer, vol. 18(4), pages 493-527, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Llamazares, Bonifacio & Pérez-Asurmendi, Patrizia, 2013. "Triple-acyclicity in majorities based on difference in support," MPRA Paper 52218, University Library of Munich, Germany.
    2. Richard Baron & Mostapha Diss & Eric Rémila & Philippe Solal, 2015. "A geometric examination of majorities based on difference in support," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(1), pages 123-153, June.
    3. Meimei Xia & Jian Chen, 2015. "Studies on Interval Multiplicative Preference Relations and Their Application to Group Decision Making," Group Decision and Negotiation, Springer, vol. 24(1), pages 115-144, January.
    4. Bice Cavallo, 2019. "Coherent weights for pairwise comparison matrices and a mixed-integer linear programming problem," Journal of Global Optimization, Springer, vol. 75(1), pages 143-161, September.
    5. José Carlos R. Alcantud, 2020. "Simple Majorities with Voice but No Vote," Group Decision and Negotiation, Springer, vol. 29(5), pages 803-822, October.
    6. Paul Tae-Woo Lee & Cheng-Wei Lin & Yi-Shih Chung, 2014. "Comparison analysis for subjective and objective weights of financial positions of container shipping companies," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(3), pages 241-250, May.
    7. Zhou-Jing Wang & Yuhong Wang & Kevin W. Li, 2016. "An Acceptable Consistency-Based Framework for Group Decision Making with Intuitionistic Preference Relations," Group Decision and Negotiation, Springer, vol. 25(1), pages 181-202, January.
    8. Fu, Chao & Yang, Shanlin, 2012. "An evidential reasoning based consensus model for multiple attribute group decision analysis problems with interval-valued group consensus requirements," European Journal of Operational Research, Elsevier, vol. 223(1), pages 167-176.
    9. Wu, Zhibin & Huang, Shuai & Xu, Jiuping, 2019. "Multi-stage optimization models for individual consistency and group consensus with preference relations," European Journal of Operational Research, Elsevier, vol. 275(1), pages 182-194.
    10. Xunjie Gou & Zeshui Xu & Xinxin Wang & Huchang Liao, 2021. "Managing consensus reaching process with self-confident double hierarchy linguistic preference relations in group decision making," Fuzzy Optimization and Decision Making, Springer, vol. 20(1), pages 51-79, March.
    11. King, Sarah Schulz & Powers, Robert C., 2018. "Beyond neutrality: Extended difference of votes rules," Mathematical Social Sciences, Elsevier, vol. 93(C), pages 146-152.
    12. Chia-Hua Cheng & James J. H. Liou & Chui-Yu Chiu, 2017. "A Consistent Fuzzy Preference Relations Based ANP Model for R&D Project Selection," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    13. Tlili, Ali & Belahcène, Khaled & Khaled, Oumaima & Mousseau, Vincent & Ouerdane, Wassila, 2022. "Learning non-compensatory sorting models using efficient SAT/MaxSAT formulations," European Journal of Operational Research, Elsevier, vol. 298(3), pages 979-1006.
    14. Liu Fang & Peng Yanan & Zhang Weiguo & Pedrycz Witold, 2017. "On Consistency in AHP and Fuzzy AHP," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 128-147, April.
    15. Tien-Chin Wang & Chia-Nan Wang & Xuan Huynh Nguyen, 2016. "Evaluating the Influence of Criteria to Attract Foreign Direct Investment (FDI) to Develop Supporting Industries in Vietnam by Utilizing Fuzzy Preference Relations," Sustainability, MDPI, vol. 8(5), pages 1-14, May.
    16. Nannan Wu & Yejun Xu & D. Marc Kilgour, 2019. "Water allocation analysis of the Zhanghe River basin using the Graph Model for Conflict Resolution with incomplete fuzzy preferences," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
    17. Chiclana, F. & Herrera-Viedma, E. & Herrera, F. & Alonso, S., 2007. "Some induced ordered weighted averaging operators and their use for solving group decision-making problems based on fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 182(1), pages 383-399, October.
    18. Mostapha Diss & Patrizia Pérez-Asurmendi, 2015. "Consistent collective decisions under majorities based on difference of votes," Working Papers 1533, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    19. Matheus Pereira Libório & Petr Yakovlevitch Ekel & Oseias da Silva Martinuci & Letícia Ribeiro Figueiredo & Renato Moreira Hadad & Renata de Mello Lyrio & Patrícia Bernardes, 2022. "Fuzzy set based intra-urban inequality indicator," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(2), pages 667-687, April.
    20. Tien-Chin Wang & Hsiu-Chin Hsieh & Xuan-Huynh Nguyen & Chin-Ying Huang & Jen-Yao Lee, 2022. "Evaluating the Influence of Criteria Revitalization Strategy Implementation for the Hospitality Industry in the Post-Pandemic Era," World, MDPI, vol. 3(2), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:16:y:2017:i:4:d:10.1007_s10700-016-9258-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.