IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v15y2016i4d10.1007_s10700-016-9232-1.html
   My bibliography  Save this article

Parametric computation of a fuzzy set solution to a class of fuzzy linear fractional optimization problems

Author

Listed:
  • Bogdana Stanojević

    (Mathematical Institute of the Serbian Academy of Sciences and Arts)

  • Milan Stanojević

    (University of Belgrade)

Abstract

The class of fuzzy linear fractional optimization problems with fuzzy coefficients in the objective function is considered in this paper. We propose a parametric method for computing the membership values of the extreme points in the fuzzy set solution to such problems. We replace the exhaustive computation of the membership values—found in the literature for solving the same class of problems—by a parametric analysis of the efficiency of the feasible basic solutions to the bi-objective linear fractional programming problem through the optimality test in a related linear programming problem, thus simplifying the computation. An illustrative example from the field of production planning is included in the paper to complete the theoretical presentation of the solving approach, but also to emphasize how many real life problems may be modelled mathematically using fuzzy linear fractional optimization.

Suggested Citation

  • Bogdana Stanojević & Milan Stanojević, 2016. "Parametric computation of a fuzzy set solution to a class of fuzzy linear fractional optimization problems," Fuzzy Optimization and Decision Making, Springer, vol. 15(4), pages 435-455, December.
  • Handle: RePEc:spr:fuzodm:v:15:y:2016:i:4:d:10.1007_s10700-016-9232-1
    DOI: 10.1007/s10700-016-9232-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-016-9232-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-016-9232-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Izaz Ullah Khan & Tahir Ahmad & Normah Maan, 2013. "A Simplified Novel Technique for Solving Fully Fuzzy Linear Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 159(2), pages 536-546, November.
    2. Jagdeep Kaur & Amit Kumar, 2013. "A New Method to Find the Unique Fuzzy Optimal Value of Fuzzy Linear Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 529-534, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    2. Hawaf AbdAlhakim & O. E. Emam & A. A. Abd El-Mageed, 2019. "Architecting a fully fuzzy information model for multi-level quadratically constrained quadratic programming problem," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 367-389, June.
    3. Arana-Jiménez, Manuel & Blanco, Víctor & Fernández, Elena, 2020. "On the fuzzy maximal covering location problem," European Journal of Operational Research, Elsevier, vol. 283(2), pages 692-705.
    4. Hsien-Chung Wu, 2019. "Solving Fuzzy Linear Programming Problems with Fuzzy Decision Variables," Mathematics, MDPI, vol. 7(7), pages 1-105, June.
    5. Manuel Arana-Jiménez & Carmen Sánchez-Gil, 2020. "On generating the set of nondominated solutions of a linear programming problem with parameterized fuzzy numbers," Journal of Global Optimization, Springer, vol. 77(1), pages 27-52, May.
    6. Boris Pérez-Cañedo & José Luis Verdegay & Eduardo René Concepción-Morales & Alejandro Rosete, 2020. "Lexicographic Methods for Fuzzy Linear Programming," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
    7. Izaz Ullah Khan & Tahir Ahmad & Normah Maan, 2017. "A Reply to a Note on the Paper “A Simplified Novel Technique for Solving Fully Fuzzy Linear Programming Problems”," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 353-356, April.
    8. Reza Ghanbari & Khatere Ghorbani-Moghadam & Nezam Mahdavi-Amiri, 2021. "A time variant multi-objective particle swarm optimization algorithm for solving fuzzy number linear programming problems using modified Kerre’s method," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 403-424, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:15:y:2016:i:4:d:10.1007_s10700-016-9232-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.