IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v34y2022i4d10.1007_s10696-022-09478-3.html
   My bibliography  Save this article

Analytics and Optimization in Healthcare Management

Author

Listed:
  • Vincent Augusto

    (Centre ingénierie et santé, École des Mines de Saint-Étienne)

  • Nadia Lahrichi

    (Department of Mathematical and Industrial Engineering, Polytechnique Montréal)

  • Ettore Lanzarone

    (University of Bergamo)

  • Taesik Lee

    (KAIST)

  • Jie Song

    (Department of Industrial & Management Engineering, Peking University)

Abstract

No abstract is available for this item.

Suggested Citation

  • Vincent Augusto & Nadia Lahrichi & Ettore Lanzarone & Taesik Lee & Jie Song, 2022. "Analytics and Optimization in Healthcare Management," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 821-823, December.
  • Handle: RePEc:spr:flsman:v:34:y:2022:i:4:d:10.1007_s10696-022-09478-3
    DOI: 10.1007/s10696-022-09478-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-022-09478-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-022-09478-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Na Li & Xiaorui Li & Paul Forero, 2022. "Physician scheduling for outpatient department with nonhomogeneous patient arrival and priority queue," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 879-915, December.
    2. Kyosang Hwang & Tooba Binte Asif & Taesik Lee, 2022. "Choice-driven location-allocation model for healthcare facility location problem," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 1040-1065, December.
    3. Paola Cappanera & Filippo Visintin & Roberta Rossi, 2022. "The emergency department physician rostering problem: obtaining equitable solutions via network optimization," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 916-959, December.
    4. Dominic J. Breuer & Khedidja Seridi & Nadia Lahrichi & Mohit Shukla & James C. Benneyan, 2022. "Robust multi-period capacity, location, and access of rural cardiovascular services under uncertainty," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 1013-1039, December.
    5. Jingtong Zhao & Hanqi Wen, 2022. "Dynamic planning with reusable healthcare resources: application to appointment scheduling," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 859-878, December.
    6. Timothy C. Y. Chan & Daniel Letourneau & Benjamin G. Potter, 2022. "Sparse flexible design: a machine learning approach," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 1066-1116, December.
    7. Mariana Oliveira & Filippo Visintin & Daniel Santos & Inês Marques, 2022. "Flexible master surgery scheduling: combining optimization and simulation in a rolling horizon approach," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 824-858, December.
    8. Alberto De Santis & Tommaso Giovannelli & Stefano Lucidi & Mauro Messedaglia & Massimo Roma, 2022. "Determining the optimal piecewise constant approximation for the nonhomogeneous Poisson process rate of Emergency Department patient arrivals," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 979-1012, December.
    9. Jie Zhou & Peng Guo, 2022. "Capacity management of CT department with service time differences and emergency nonpreemptive priority," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 960-978, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingyi Huang & Xinyu Wang & Hongyan Chen, 2022. "Location Selection for Regional Logistics Center Based on Particle Swarm Optimization," Sustainability, MDPI, vol. 14(24), pages 1-10, December.
    2. Morteza Lalmazloumian & M. Fazle Baki & Majid Ahmadi, 2023. "A two-stage stochastic optimization framework to allocate operating room capacity in publicly-funded hospitals under uncertainty," Health Care Management Science, Springer, vol. 26(2), pages 238-260, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:34:y:2022:i:4:d:10.1007_s10696-022-09478-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.