IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v23y2019i2d10.1007_s00780-019-00384-5.html
   My bibliography  Save this article

Estimating the Hurst parameter from short term volatility swaps: a Malliavin calculus approach

Author

Listed:
  • Elisa Alòs

    (Universitat Pompeu Fabra
    Barcelona Graduate School of Economics)

  • Kenichiro Shiraya

    (The University of Tokyo)

Abstract

This paper is devoted to studying the difference between the fair strike of a volatility swap and the at-the-money implied volatility (ATMI) of a European call option. It is well known that the difference between these two quantities converges to zero as the time to maturity decreases. In this paper, we make use of a Malliavin calculus approach to derive an exact expression for this difference. This representation allows us to establish that the order of convergence is different in the correlated and uncorrelated cases, and that it depends on the behavior of the Malliavin derivative of the volatility process. In particular, we see that for volatilities driven by a fractional Brownian motion, this order depends on the corresponding Hurst parameter H $H$ . Moreover, in the case H ≥ 1 / 2 $H\geq 1/2$ , we develop a model-free approximation formula for the volatility swap in terms of the ATMI and its skew.

Suggested Citation

  • Elisa Alòs & Kenichiro Shiraya, 2019. "Estimating the Hurst parameter from short term volatility swaps: a Malliavin calculus approach," Finance and Stochastics, Springer, vol. 23(2), pages 423-447, April.
  • Handle: RePEc:spr:finsto:v:23:y:2019:i:2:d:10.1007_s00780-019-00384-5
    DOI: 10.1007/s00780-019-00384-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-019-00384-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-019-00384-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Friz & Jim Gatheral, 2005. "Valuation of volatility derivatives as an inverse problem," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 531-542.
    2. Jiro Akahori & Xiaoming Song & Tai-Ho Wang, 2017. "Probability density of lognormal fractional SABR model," Papers 1702.08081, arXiv.org, revised Jan 2019.
    3. Masaaki Fukasawa, 2011. "Asymptotic analysis for stochastic volatility: martingale expansion," Finance and Stochastics, Springer, vol. 15(4), pages 635-654, December.
    4. Masaaki Fukasawa, 2014. "Volatility Derivatives And Model-Free Implied Leverage," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(01), pages 1-23.
    5. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    6. Steven P. Feinstein, 1989. "Forecasting stock-market volatility using options on index futures," Economic Review, Federal Reserve Bank of Atlanta, issue May, pages 12-30.
    7. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    8. Marc Romano & Nizar Touzi, 1997. "Contingent Claims and Market Completeness in a Stochastic Volatility Model," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 399-412, October.
    9. Elisa Alòs & Jorge León & Josep Vives, 2007. "On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility," Finance and Stochastics, Springer, vol. 11(4), pages 571-589, October.
    10. Peter Carr & Roger Lee, 2009. "Volatility Derivatives," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 319-339, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Working Papers hal-03827332, HAL.
    2. Elisa Al`os & Eulalia Nualart & Makar Pravosud, 2022. "On the implied volatility of Asian options under stochastic volatility models," Papers 2208.01353, arXiv.org, revised Mar 2024.
    3. Elisa Al`os & Eulalia Nualart & Makar Pravosud, 2023. "On the implied volatility of Inverse and Quanto Inverse options under stochastic volatility models," Papers 2401.00539, arXiv.org.
    4. Antoine Jacquier & Aitor Muguruza & Alexandre Pannier, 2021. "Rough multifactor volatility for SPX and VIX options," Papers 2112.14310, arXiv.org, revised Nov 2023.
    5. Hyungbin Park, 2021. "Influence of risk tolerance on long-term investments: A Malliavin calculus approach," Papers 2104.00911, arXiv.org.
    6. Masaaki Fukasawa, 2020. "Volatility has to be rough," Papers 2002.09215, arXiv.org.
    7. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    8. Elisa Alos & Frido Rolloos & Kenichiro Shiraya, 2019. "On the difference between the volatility swap strike and the zero vanna implied volatility," Papers 1912.05383, arXiv.org, revised Dec 2020.
    9. E. Al`os & F. Rolloos & K. Shiraya, 2023. "A lower bound for the volatility swap in the lognormal SABR model," Papers 2306.14602, arXiv.org, revised Aug 2023.
    10. Elisa Al`os & Fabio Antonelli & Alessandro Ramponi & Sergio Scarlatti, 2022. "CVA in fractional and rough volatility models," Papers 2204.11554, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Alos & Kenichiro Shiraya, 2017. "Estimating the Hurst parameter from short term volatility swaps: a Malliavin calculus approach," CARF F-Series CARF-F-407, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Nov 2018.
    2. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.
    3. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    4. Paul Gassiat, 2022. "Weak error rates of numerical schemes for rough volatility," Papers 2203.09298, arXiv.org, revised Feb 2023.
    5. Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org.
    6. Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2023. "Local volatility under rough volatility," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1119-1145, October.
    7. Siow Woon Jeng & Adem Kiliçman, 2021. "On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model," Mathematics, MDPI, vol. 9(22), pages 1-32, November.
    8. Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2023. "Local volatility under rough volatility," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1119-1145, October.
    9. Christian Bayer & Chiheb Ben Hammouda & Raul Tempone, 2018. "Hierarchical adaptive sparse grids and quasi Monte Carlo for option pricing under the rough Bergomi model," Papers 1812.08533, arXiv.org, revised Jan 2020.
    10. Stefan Gerhold & Christoph Gerstenecker & Arpad Pinter, 2019. "Moment explosions in the rough Heston model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 575-608, December.
    11. Jacquier, Antoine & Pannier, Alexandre, 2022. "Large and moderate deviations for stochastic Volterra systems," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 142-187.
    12. Masaaki Fukasawa, 2020. "Volatility has to be rough," Papers 2002.09215, arXiv.org.
    13. Siow Woon Jeng & Adem Kilicman, 2020. "Series Expansion and Fourth-Order Global Padé Approximation for a Rough Heston Solution," Mathematics, MDPI, vol. 8(11), pages 1-26, November.
    14. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    15. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    16. Masaaki Fukasawa & Tetsuya Takabatake & Rebecca Westphal, 2019. "Is Volatility Rough ?," Papers 1905.04852, arXiv.org, revised May 2019.
    17. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    18. Peter K. Friz & Paul Gassiat & Paolo Pigato, 2022. "Short-dated smile under rough volatility: asymptotics and numerics," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 463-480, March.
    19. Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Sojmark, 2017. "Functional central limit theorems for rough volatility," Papers 1711.03078, arXiv.org, revised Nov 2023.
    20. Archil Gulisashvili & Frederi Viens & Xin Zhang, 2015. "Small-time asymptotics for Gaussian self-similar stochastic volatility models," Papers 1505.05256, arXiv.org, revised Mar 2016.

    More about this item

    Keywords

    Malliavin calculus; Fractional volatility models; Volatility swaps;
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:23:y:2019:i:2:d:10.1007_s00780-019-00384-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.