Advanced Search
MyIDEAS: Login

On the range of options prices (*)

Contents:

Author Info

  • Ernst Eberlein

    (Institut fØr Mathematische Stochastik, UniversitÄt Freiburg, Eckerstrasse 1, D-79104 Freiburg, Germany)

  • Jean Jacod

    (Laboratoire de ProbabilitÊs , UniversitÊ Pierre et Marie Curie, Tour 56, 4 Place Jussieu, F-75 252 Paris Cedex, France)

Registered author(s):

    Abstract

    In this paper we consider the valuation of an option with time to expiration $T$ and pay-off function $g$ which is a convex function (as is a European call option), and constant interest rate $r$, in the case where the underlying model for stock prices $(S_t)$ is a purely discontinuous process (hence typically the model is incomplete). The main result is that, for "most" such models, the range of the values of the option, using all possible equivalent martingale measures for the valuation, is the interval $(e^{-rT}g(e^{rT}S_0),S_0)$, this interval being the biggest interval in which the values must lie, whatever model is used.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://link.springer.de/link/service/journals/00780/papers/7001002/70010131.pdf
    Download Restriction: Access to the full text of the articles in this series is restricted

    File URL: http://link.springer.de/link/service/journals/00780/papers/7001002/70010131.ps.gz
    Download Restriction: Access to the full text of the articles in this series is restricted

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Springer in its journal Finance and Stochastics.

    Volume (Year): 1 (1997)
    Issue (Month): 2 ()
    Pages: 131-140

    as in new window
    Handle: RePEc:spr:finsto:v:1:y:1997:i:2:p:131-140

    Note: received: November 1995; final version received: November 1996
    Contact details of provider:
    Web page: http://www.springerlink.com/content/101164/

    Order Information:
    Web: http://link.springer.de/orders.htm

    Related research

    Keywords: Contingent claim valuation; incomplete model; purely discontinuous process; martingale measures;

    Find related papers by JEL classification:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. H. Föllmer & Y.M. Kabanov, 1997. "Optional decomposition and Lagrange multipliers," Finance and Stochastics, Springer, vol. 2(1), pages 69-81.
    2. Ole Barndorff-Nielsen & Elisa Nicolato & Neil Shephard, 2002. "Some recent developments in stochastic volatility modelling," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 11-23.
    3. Mingxin Xu, 2006. "Risk measure pricing and hedging in incomplete markets," Annals of Finance, Springer, vol. 2(1), pages 51-71, January.
    4. A. Fiori Maccioni, 2011. "The risk neutral valuation paradox," Working Paper CRENoS 201112, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    5. Kais Hamza & Fima C. Klebaner & Zinoviy Landsman & Ying-Oon Tan, 2014. "Option Pricing for Symmetric L\'evy Returns with Applications," Papers 1402.1554, arXiv.org.
    6. José Santiago Fajardo Barbachan, 2003. "Optimal Consumption and Investment with Lévy Processes," Revista Brasileira de Economia, FGV/EPGE Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil), vol. 57(4), pages 825-848, October.
    7. Rüdiger Frey & Carlos A. Sin, 1999. "Bounds on European Option Prices under Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 97-116.
    8. Eberlein, Ernst & Papapantoleon, Antonis, 2005. "Equivalence of floating and fixed strike Asian and lookback options," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 31-40, January.
    9. Jan Bergenthum & Ludger Rüschendorf, 2006. "Comparison of Option Prices in Semimartingale Models," Finance and Stochastics, Springer, vol. 10(2), pages 222-249, April.
    10. Xu, Wei & Odening, Martin & Musshoff, Oliver, 2007. "Indifference Pricing of Weather Insurance," 101st Seminar, July 5-6, 2007, Berlin Germany 9267, European Association of Agricultural Economists.
    11. N. Reich & C. Schwab & C. Winter, 2010. "On Kolmogorov equations for anisotropic multivariate Lévy processes," Finance and Stochastics, Springer, vol. 14(4), pages 527-567, December.
    12. Bladt, Mogens & Rydberg, Tina Hviid, 1998. "An actuarial approach to option pricing under the physical measure and without market assumptions," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 65-73, May.
    13. Küchler, Uwe & Tappe, Stefan, 2008. "Bilateral gamma distributions and processes in financial mathematics," Stochastic Processes and their Applications, Elsevier, vol. 118(2), pages 261-283, February.
    14. Alessandro Fiori Maccioni, 2011. "Endogenous Bubbles in Derivatives Markets: The Risk Neutral Valuation Paradox," Papers 1106.5274, arXiv.org, revised Sep 2011.
    15. Pascal François & Geneviève Gauthier & Frédéric Godin, 2012. "Optimal Hedging when the Underlying Asset Follows a Regime-switching Markov Process," Cahiers de recherche 1234, CIRPEE.
    16. Rama CONT, 1998. "Beyond implied volatility: extracting information from option prices," Finance 9804002, EconWPA.
    17. Eric Benhamou, 2002. "Option pricing with Levy Process," Finance 0212006, EconWPA.
    18. Leonel Pérez-Hernández, 2005. "On the Existence of Efficient Hedge for an American Contingent Claim: Discrete Time Market," Department of Economics and Finance Working Papers EC200505, Universidad de Guanajuato, Department of Economics and Finance.
    19. Antonis Papapantoleon, 2008. "An introduction to L\'{e}vy processes with applications in finance," Papers 0804.0482, arXiv.org, revised Nov 2008.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:1:y:1997:i:2:p:131-140. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.