IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v95y2022i9d10.1140_epjb_s10051-022-00410-0.html
   My bibliography  Save this article

Infinitely coexisting chaotic and nonchaotic attractors in a RLC shunted Josephson Junction with an AC bias current

Author

Listed:
  • Karthikeyan Rajagopal

    (Chennai Institute of Technology
    University Centre for Research and Development, Chandigarh University)

  • Suresh Kumarasamy

    (Chennai Institute of Technology)

  • Sathiyadevi Kanagaraj

    (Chennai Institute of Technology)

  • Anitha Karthikeyan

    (Prathyusha Engineering College)

Abstract

Josephson Junction (JJ) plays an essential role in superconducting electronics. The Josephson Junction may be classified into different kinds based on the requirements and typically studied under direct bias current. In contrast to prior reports, in this paper, we consider resistive–capacitive–inductance (RLC) shunted Josephson Junction by replacing the direct current as alternating bias current. Using the continuation diagram, we first discuss the stability of equilibrium points. Followed by the dynamical characteristics of such shunted Josephson Junction are explored by varying periodic and quasi-periodic alternating bias currents. We show the periodic bias current exhibits a chaotic behavior while the quasi-periodic bias current displays chaotic as well as strange nonchaotic attractors. We then validated the coexistence of multiple attractors in the parameter space by varying the initial conditions. Finally, the existence of such strange nonchaotic attractors is confirmed using various techniques, such as singular-continuous spectrum, separation of nearby trajectories, and distribution of finite-time Lyapunov exponents. Graphic abstract

Suggested Citation

  • Karthikeyan Rajagopal & Suresh Kumarasamy & Sathiyadevi Kanagaraj & Anitha Karthikeyan, 2022. "Infinitely coexisting chaotic and nonchaotic attractors in a RLC shunted Josephson Junction with an AC bias current," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(9), pages 1-9, September.
  • Handle: RePEc:spr:eurphb:v:95:y:2022:i:9:d:10.1140_epjb_s10051-022-00410-0
    DOI: 10.1140/epjb/s10051-022-00410-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-022-00410-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-022-00410-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marius-F. Danca & Nikolay Kuznetsov, 2021. "Hidden Strange Nonchaotic Attractors," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
    2. E. Neumann & A. Pikovsky, 2003. "Slow-fast dynamics in Josephson junctions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 34(3), pages 293-303, August.
    3. Di-Yi Chen & Wei-Li Zhao & Xiao-Yi Ma & Run-Fan Zhang, 2012. "Control and Synchronization of Chaos in RCL-Shunted Josephson Junction with Noise Disturbance Using Only One Controller Term," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-14, July.
    4. Colince Welba & Dhanagopal Ramachandran & Alexendre Noura & Victor Kamdoum Tamba & Sifeu Takougang Kingni & Pascal Eloundou Ntsama & Pierre Ele & Akif Akgul, 2022. "Josephson Junction Model: FPGA Implementation and Chaos-Based Encryption of sEMG Signal through Image Encryption Technique," Complexity, Hindawi, vol. 2022, pages 1-14, February.
    5. Sifeu Takougang Kingni & Gaetan Fautso Kuiate & Romanic Kengne & Robert Tchitnga & Paul Woafo, 2017. "Analysis of a No Equilibrium Linear Resistive-Capacitive-Inductance Shunted Junction Model, Dynamics, Synchronization, and Application to Digital Cryptography in Its Fractional-Order Form," Complexity, Hindawi, vol. 2017, pages 1-12, October.
    6. Noel Freddy Fotie Foka & Balamurali Ramakrishnan & André Rodrigue Tchamda & Sifeu Takougang Kingni & Karthikeyan Rajagopal & Victor Kamgang Kuetche, 2021. "Dynamical analysis of Josephson junction neuron model driven by a thermal signal and its digital implementation based on microcontroller," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(12), pages 1-7, December.
    7. Zhang, Ge & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir & Alzahrani, Faris, 2018. "Dynamical behavior and application in Josephson Junction coupled by memristor," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 290-299.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramadoss, Janarthanan & Ngongiah, Isidore Komofor & Chamgoué, André Chéagé & Kingni, Sifeu Takougang & Rajagopal, Karthikeyan, 2023. "Fractal resistive–capacitive–inductive shunted Josephson junction: Theoretical investigation and microcontroller implementation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    2. Isidore Komofor Ngongiah & Balamurali Ramakrishnan & Hayder Natiq & Justin Roger Mboupda Pone & Gaetan Fautso Kuiate, 2022. "Josephson junction based on high critical-temperature superconductors: analysis, microcontroller implementation, and suppression of coexisting and chaotic attractors," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(9), pages 1-13, September.
    3. Liu, Yong & Ren, Guodong & Zhou, Ping & Hayat, Tasawar & Ma, Jun, 2019. "Synchronization in networks of initially independent dynamical systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 370-380.
    4. Ren, Guodong & Xue, Yuxiong & Li, Yuwei & Ma, Jun, 2019. "Field coupling benefits signal exchange between Colpitts systems," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 45-54.
    5. Guo, Yeye & Wang, Chunni & Yao, Zhao & Xu, Ying, 2022. "Desynchronization of thermosensitive neurons by using energy pumping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    6. Ahmed A. Abd El-Latif & Janarthanan Ramadoss & Bassem Abd-El-Atty & Hany S. Khalifa & Fahimeh Nazarimehr, 2022. "A Novel Chaos-Based Cryptography Algorithm and Its Performance Analysis," Mathematics, MDPI, vol. 10(14), pages 1-22, July.
    7. Sun, Guoping & Yang, Feifei & Ren, Guodong & Wang, Chunni, 2023. "Energy encoding in a biophysical neuron and adaptive energy balance under field coupling," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    8. Wu, Fuqiang & Zhou, Ping & Alsaedi, Ahmed & Hayat, Tasawar & Ma, Jun, 2018. "Synchronization dependence on initial setting of chaotic systems without equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 124-132.
    9. C. O. A. Osseni & A. V. Monwanou, 2022. "Identical and reduced-order synchronizations of some Josephson junctions model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(12), pages 1-13, December.
    10. Noel Freddy Fotie Foka & Balamurali Ramakrishnan & André Cheage Chamgoué & Alain Francis Talla & Victor Kamgang Kuetche, 2022. "Neuronal circuit based on Josephson junction actuated by a photocurrent: dynamical analysis and microcontroller implementation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(6), pages 1-8, June.
    11. Sifeu Takougang Kingni & Gaetan Fautso Kuiate & Romanic Kengne & Robert Tchitnga & Paul Woafo, 2017. "Analysis of a No Equilibrium Linear Resistive-Capacitive-Inductance Shunted Junction Model, Dynamics, Synchronization, and Application to Digital Cryptography in Its Fractional-Order Form," Complexity, Hindawi, vol. 2017, pages 1-12, October.
    12. Yamauchi, Atsushi & Ito, Koichi & Shibasaki, Shota & Namba, Toshiyuki, 2023. "Continuous irregular dynamics with multiple neutral trajectories permit species coexistence in competitive communities," Theoretical Population Biology, Elsevier, vol. 149(C), pages 39-47.
    13. Mezatio, Brice Anicet & Motchongom, Marceline Tingue & Wafo Tekam, Blaise Raoul & Kengne, Romanic & Tchitnga, Robert & Fomethe, Anaclet, 2019. "A novel memristive 6D hyperchaotic autonomous system with hidden extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 100-115.
    14. Ran, Jie & Li, Yu-Qin & Xiong, Yi-Bin, 2022. "On the dynamics of fractional q-deformation chaotic map," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    15. Zhou, Ping & Yao, Zhao & Ma, Jun & Zhu, Zhigang, 2021. "A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    16. Asir, M. Paul & Thamilmaran, K. & Prasad, Awadhesh & Feudel, Ulrike & Kuznetsov, N.V. & Shrimali, Manish Dev, 2023. "Hidden strange nonchaotic dynamics in a non-autonomous model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    17. Venditti, Claudia & Adrover, Alessandra & Giona, Massimiliano, 2022. "Inertial effects and long-term transport properties of particle motion in washboard potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    18. Liu, Zhilong & Ma, Jun & Zhang, Ge & Zhang, Yin, 2019. "Synchronization control between two Chua′s circuits via capacitive coupling," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 94-106.
    19. Jiang Wang & Yang Gu & Kang Rong & Quan Xu & Xi Zhang, 2022. "Memristor-Based Lozi Map with Hidden Hyperchaos," Mathematics, MDPI, vol. 10(19), pages 1-12, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:95:y:2022:i:9:d:10.1140_epjb_s10051-022-00410-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.